Tìm gtnn của B= ( x+1)2 + 2(6-3y)2 + 3
a,Cho 3y-x=6. Tìm GTNN của bt B=x/y-2+2x-3y?x-6+2x^2+6y
b,Tìm ĐKXĐ và rút gọn biểu thức A=1/a*(a-b)*(a-c)+1/b*(b-a)*(b-c)+1/c*(c-b)*(c-a)
Tìm GTNN của:
A:4x2+9y2-4x-12y+1
B:(x+3y-5)2-6xy+26
C:(x-1)(x+2)(x+3)(x+6)
Tìm GTNN của các biểu thức sau:
1,P=9x^2-7x+2
2,P=x^4+4(y^2+x-xy-2y+1)+6
3,P=4x(x+y+1)+y(y+2)+5
4,P=x^2+3y(3y-2x-2)+2(x+4)+3
Trả lời:
1, \(P=9x^2-7x+2=9\left(x^2-\frac{7}{9}x+\frac{2}{9}\right)=9\left[\left(x^2-2x\frac{7}{18}+\frac{49}{324}\right)+\frac{23}{324}\right]\)
\(=9\left[\left(x-\frac{7}{18}\right)^2+\frac{23}{324}\right]=9\left(x-\frac{7}{18}\right)^2+\frac{23}{36}\)
Ta có: \(9\left(x-\frac{7}{18}\right)^2\ge0\forall x\)
\(\Leftrightarrow9\left(x-\frac{7}{18}\right)^2+\frac{23}{26}\ge\frac{23}{26}\forall x\)
Dấu "=" xảy ra khi \(x-\frac{7}{18}=0\Leftrightarrow x=\frac{7}{18}\)
Vậy GTNN của P = 23/36 khi x = 7/18
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
1:Cho x+y=2.Tính g.trị của biểu thức
A=x2+2xy+y2-3x-3y+1
2: a) Tìm GTNN của biểu thức
A=x2-5x+6
b) Tìm GTLN của biểu thức
B=3-2x-x2
ta có:
Tìm GTNN :
a) C = x^4 - 8xy - x^3y + x^2y^2 - xy^3 + y^4 +212
b) D = (x - 2)(y + 6)xy + 12x^2 - 24x + 3y^2 + 18 y + 36
bài 1 Tìm GTNN của biểu thức
A= 25x2+3y2-10x+11
B= (x-3)2+(x-11)2
C= (x+1).(x-2).(x-3).(x-6)
cac ban giup minh nhe. minh dang can
C=[(x+1)(x-6)][(x-2)(x-3)]
=(x2-5x-6)(x2-5x+6)
=(x2-5x)2-36>=-36
GTNN cua C=-36 tai x2-5x=0=>x(x-5)=0=>x=0 hoac x=5
B=(x-3)2+(x-11)2
=x2-6x+9+x2-22x+121
=2x2-28x+130
=2(x2-14x+65)
=2(x2-2.7x+72-72+65)
=2[(x-7)2-49+65]
=2(x-7)2+32
=> vì 2(x-7)2 >= 0
=>2(x-7)2+32 >= 32
=> GTNN của B=32. Khi x=7
A=25x2+3y2-10x+11
=25x2-10x+1+3y2+10
=(5x-1)2+3y2+10
=>vì (5x-1)2+3y2 >= 0
=>(5x-1)2+3y2+10>= 10
=> GTNN của A=10 . Khi x=1/5 và y=0
Tìm GTNN của a. A= 25x2 + 3y2 - 10x + 11
b. B= (x+1)(x-2)(x-3)(x-6)
a) A=25x^2+3y^2-10x+11=25x^2-10x+1+3y^2+10=(5x+1)^2+3y^2+10
Vì (5x+1)^2>=0 với mọi giá trị của x
3y^2>=0 với mọi giá trị của y
Nên: (5x+1)^2+3y^2+10>=10(dấu "=" xảy ra khi và chỉ khi x=-1/5 và y=0)
b)(x+1)(x-1)(x-3)(x-6)=[(x+1)(x-6)][(x-2)(x-3)]=(x^2-5x-6)(x^2-5x+6)=(x^2-5x-6)^2+12(x^2-5x-6)+36-36=(x^2-5x-6+6)^2-36=(x^2-5x)^2-36
Vì (x^2-5x)^2>=0 nên MinB=-36
k cho mik nha!
Tìm GTNN của các biểu thức sau
d)D=(x-3)2+(x-11)2
e)E=(x-1).(x+2).(x+3).(x+6)
g)G=(x+1).(x-2).(x-3).(x-6)
h)H=(x+3y-5)2-6xy+26