Cho p và p+27 đều là số nguyên tố. Tìm p
1.Tìm số tự nhiên p sao cho p và p + 3 đều là số nguyên tố.
2.Tìm số nguyên tố p sao cho p + 4 và p + 8 đều là số nguyên tố.
Với p=2 ta được p+4=6(hợp số)(Loại)
Với p=3 ta được p+4=7(số nguyên tố),p+8=11(snt)(TM)
Làm nốt xét p khác 3 nhé!
Bài 1 : Tìm số nguyên tố p để p^2+41 là số nguyên tố
Bài2: Tìm số nguyên tố p để p^2+4vàp^2-4 đều là số nguyên tố
Bài3: Tổng 5 số nguyên tố là 142 . Tìm số nguyên tố nhỏ nhất trong 5 số trên
Bài4: tìm 2 số nguyên tố sao cho tổng và tích của chúng đều là số nguyên tố
Bài 1: p = 4
Bài 2: p =3
Bài 3. p = 2
Bài 4: ....... tự giải đi
Lần sau hỏi bài của lớp 6 thì đừng hỏi ở đây
Tìm số nguyên tố p sao cho:
p+10 và p+14 đều là số nguyên tố
p+6,p+8 và p+14 đều là số nguyên tố
vi p la so nguyen to
đặt p = có dạng 3k, 3k+1, 3k+2
Thay vào
+>p+10=3k+10
p+14=3k+14(chọn)
+>p+10=3k+1+10=3k+11
p+14=3k+1+14=3k+15=>loại
+>p+10=3k+2+10=3k+12=>loại
Từ các bt trên suy ra snt cần tìm là 3
Các câu sau làm tuong tu
Tìm số nguyên tố p sao cho:
p+10 và p+14 đều là số nguyên tố
p+6,p+8,p+12 và p+14 đều là số nguyên tố
Tìm số nguyên tố p sao cho:
a, p+10 và p+14 đều là các số nguyên tố.
b, p+10 và p+20 đều là các số nguyên tố.
c, p+2 ; p+6 ; p+8 và p+14 đều là các số nguyên tố.
ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc
a) Tìm p là số tự nhiên sao cho p+1;p+2;p+4 đều là số nguyên tố.
b) Tìm số nguyên tố p sao cho 2p2+1 cũng là số nguyên tố.
c) Tìm số nguyên tố p sao cho p+10 và p+14 cũng là số nguyên tố
b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
Tìm số nguyên tố p và q sao cho 7p+q và pq + 11 đều là số nguyên tố
Tìm số nguyên tố p sao cho 2p+ p2 cũng là số nguyên tố
tìm các số nguyên tố n sao cho:
a) N; n+3;n+5 đều là các số nguyên tố
b) n+2 và n+4 đều là số nguyên tố
Tìm số nguyên tố sao cho p+1 và p+5 đều là số nguyên tố
Do p + 1 và p + 5 là số nguyên tố
Mà p + 5 là số lẻ
⇒ p là số chẵn
⇒ p = 2
Tìm số nguyên tố P sao cho P + 10 và P +14 đều là số nguyên tố
Lời giải:
Nếu $p$ chia hết cho $3$ thì $p=3$. Khi đó $p+10, p+14$ cũng là snt (thỏa mãn)
Nếu $p$ chia $3$ dư $1$ thì đặt $p=3k+1$ với $k$ tự nhiên.
Khi đó $p+14=3k+15=3(k+5)\vdots 3$. Mà $p+14>3$ nên không thể là snt (trái giả thiết - loại)
Nếu $p$ chia $3$ dư $2$ thì đặt $p=3k+2$ với $k$ tự nhiên.
Khi đó $p+10=3k+12=3(k+4)\vdots 3$. Mà $p+10>3$ nên không thể là snt (trái giả thiết - loại)
Vậy $p=3$ là đáp án duy nhất thỏa mãn.