Tìm số nguyên x để a)2x-5/3x+6 >0 b)4x-1/x+3 <0
Tìm x nguyên để P là số nguyên:
a) P=\(\dfrac{2x+5}{x+3}\)
b) P=\(\dfrac{3x+4}{x+1}\)
c) P=\(\dfrac{4x-1}{2x+3}\)
a) \(P=\dfrac{2x+5}{x+3}\inℤ\left(x\inℤ;x\ne-3\right)\)
\(\Rightarrow2x+5⋮x+3\)
\(\Rightarrow2x+5-2\left(x+3\right)⋮x+3\)
\(\Rightarrow2x+5-2x-6⋮x+3\)
\(\Rightarrow-1⋮x+3\)
\(\Rightarrow x+3\in\left\{-1;1\right\}\)
\(\Rightarrow x\in\left\{-4;-2\right\}\)
b) \(P=\dfrac{3x+4}{x+1}\inℤ\left(x\inℤ;x\ne-1\right)\)
\(\Rightarrow3x+4⋮x+1\)
\(\Rightarrow3x+4-3\left(x+1\right)⋮x+1\)
\(\Rightarrow3x+4-3x-3⋮x+1\)
\(\Rightarrow1⋮x+1\)
\(\Rightarrow x+1\in\left\{-1;1\right\}\)
\(\Rightarrow x\in\left\{-2;0\right\}\)
c) \(P=\dfrac{4x-1}{2x+3}\inℤ\left(x\inℤ;x\ne-\dfrac{3}{2}\right)\)
\(\Rightarrow4x-1⋮2x+3\)
\(\Rightarrow4x-1-2\left(2x+3\right)⋮2x+3\)
\(\Rightarrow4x-1-4x-6⋮2x+3\)
\(\Rightarrow-7⋮2x+3\)
\(\Rightarrow2x+3\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow x\in\left\{-2;-1;-5;2\right\}\)
a) P=\(\dfrac{2x+5}{x+3}=\dfrac{2\left(x+3\right)-2}{x+3}=\dfrac{2\left(x+3\right)}{x+3}-\dfrac{2}{x+3}=2-\dfrac{2}{x+3}\)
để \(P\inℤ\) thì \(\dfrac{2}{x+3}\inℤ\) hay 2 ⋮ (x-3) ⇒x+3 ϵ Ư2= (2,-2,1,-1)
ta có bảng sau:
x+3 | 2 | -2 | 1 | -1 |
x | -1 | -5 | -2 | -4 |
Vậy x \(\in-1,-2,-5,-4\)
a=x+5/x+1 b=2x+4/x+3 c=3x+8/x-1 d=2x-3/x-1 e=5x+9/x+5 g=4x+9/2x+1 h=6x+5/2x-1 i=4x-6/2x+1 k=4x+4/2x+4 n=4x+6/2x+2
Tìm x nguyên để các phân số sau có giá trị nguyên:
a) A = -3/2x - 1
b) B = 4x + 5/2x - 1
c) C = x^2 + 3x - 3/x - 5
a)để A có giá trị nguyên
=>-3 chia hết 2x-1
=>2x-1\(\in\){-3,-1,1,3}
=>2x-1\(\in\){-7;-3;1;5}
b)để B có giá trị nguyên
=>4x+5 chia hết 2x-1
<=>[2(2x-1)+7] chia hết 2x-1
=>2x-1\(\in\){1,-1,7,-7}
=>x\(\in\){1;-3;13;-15}
c tương tự
cau c minh khong bt lm ban lm not cau c cho minh dc ko
Tìm x:
a, 3x (4x -3) - 2x (5-6x) = 0
b, 5 (2x-3) + 4x (x-2) + 2x (3-2x) = 0
c, 3x (2-x) + 2x (x-1) = 5x (x+3)
d, 3x (x+1) - 5x (3-x) + 6(x2 + 2x + 3) = 0
a) 3x(4x - 3) - 2x(5 - 6x) = 0
=> 6x2 - 9x - 10x + 12x2 = 0
=> 18x2 - 19x = 0
=> x(18x - 19) = 0
=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0
=> 8x - 15 = 0
=> 8x = 15
=> x = 15 : 8 = 15/8
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x
=> 4x - x2 - 5x2 - 15x = 0
=> -6x2 - 11x = 0
=> -x(6x - 11) = 0
=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)
a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)
b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)
d) \(3x\left(x+1\right)-5x\left(3-x\right)+6\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow3x^2+3x-15x+5x^2+6x^2+12x+18=0\)
\(\Leftrightarrow14x^2+18=0\)
Mà \(14x^2+18>0\)nên pt vô nghiệm
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a. 4x-3=0
b. -x+2=6
c. -5+4x=10
d. 4x-5=6
h. 1-2x=3
2.a
(x-2).(4+3x)=0
b) (4x-1).3x=0
c) (x-5).(1+2x)=0
d) 3x.(x+2)=0
3)giẳi pt và biu diễn trục số
a) 3(x-4)-2(x-1)≥0
b) 3-2(2x+3)≤9x-4
c) 5-2(1-3x)≥-2x+4
d) 9-3(x-1)≥4x-5
Bài 1. a) 4x - 3 = 0
⇔ x = \(\dfrac{3}{4}\)
KL.....
b) - x + 2 = 6
⇔ x = - 4
KL...
c) -5 + 4x = 10
⇔ 4x = 15
⇔ x = \(\dfrac{15}{4}\)
KL....
d) 4x - 5 = 6
⇔ 4x = 11
⇔ x = \(\dfrac{11}{4}\)
KL....
h) 1 - 2x = 3
⇔ -2x = 2
⇔ x = -1
KL...
Bài 2. a) ( x - 2)( 4 + 3x ) = 0
⇔ x = 2 hoặc x = \(\dfrac{-4}{3}\)
KL......
b) ( 4x - 1)3x = 0
⇔ x = 0 hoặc x = \(\dfrac{1}{4}\)
KL.....
c) ( x - 5)( 1 + 2x) = 0
⇔ x = 5 hoặc x = \(\dfrac{-1}{2}\)
KL.....
d) 3x( x + 2) = 0
⇔ x = 0 hoặc x = -2
KL.....
Bài 3.a) 3( x - 4) - 2( x - 1) ≥ 0
⇔ x - 10 ≥ 0
⇔ x ≥ 10
b) 3 - 2( 2x + 3) ≤ 9x - 4
⇔ - 4x - 3 ≤ 9x - 4
⇔ 13x ≥1
⇔ x ≥ \(\dfrac{1}{13}\)
1) tìm số nguyên x để 4x-6/ 2x+1
2) Tìm x thuộc z để: 3.(x - 3).(x + 5)< 0
3 tìm x
1/3-(2/3-x + 5/4= 7/12 -(5/2 - 13/6)
\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\left(\frac{5}{2}-\frac{13}{6}\right)\)
\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\frac{1}{3}\)
\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{1}{4}\)
\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{12}\)
\(\frac{2}{3}-x=\frac{1}{12}-\frac{5}{4}\)
\(\frac{2}{3}-x=-\frac{7}{6}\)
\(x=\frac{2}{3}-\left(-\frac{7}{6}\right)\)
\(x=\frac{2}{3}+\frac{7}{6}\)
\(x=\frac{11}{6}\)
Tìm x thuộc z để bt sau có giá trị nguyên
1)2x^2+3x+1
2)3x-5/2
3)-6/3x+2
4)3x-5/3x-10
5)5x-3/x+1
Bài 3 tìm x để bt
a)2x(x+1)>0
b)(x-2)(x+3)<0
Nhanh giúp mình vs thank
5)
để \(\frac{5x-3}{x+1}\)là số nguyên
\(5x-3⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow5\left(x+1\right)⋮x+1\)
\(5x-3-\left(5x-5\right)⋮x+1\)
\(-2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy \(x\in\left\{0;-2;1;-3\right\}\)
tím số nguyên x biết
a) |x+3|=2x-4
b) |2x+1|+|x+8|=4x
c) |x2- 2x| =x
d) |x-3|=3x+6
e) (x2+1)(x+5)<0
g)(x-3)(6-x)>0
Tìm x
a) 3x(4x - 3) - 2x(5 - 6x) = 0
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
d) 3x (x + 1) - 5x(3 - x) + 6(x^2 + 2x + 3) = 0
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
b) 5(2x-3)+4x(x-2)+2x(3-2x)=0
\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
\(\Leftrightarrow x=\dfrac{15}{8}\)
vậy x=\(\dfrac{15}{8}\)
c)3x(2-x)+2x(x-1)=5x(x+3)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)
\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)