Chứng minh: 2 + 2^1 + 2^2 + ..... + 2^5n - 3 + 2^5n - 2 + 2^5n - 1 chia hết cho 3
1. Cho số nguyên x sao cho x chia cho 7 dư 2. Chứng tỏ rằng 2x+3 chia hết cho 7
2. Chứng minh rằng 2^0+2^1+2^2+2^3+...+2^5n-3+2^5n-2+2^5n-1 chia hết cho 31
1. Cho số nguyên x là 9 (Thỏa mãn x:7, dư 2); 2x+3(giả thuyết)
=> (2.9)+3 = 21 chia hết cho7 (chia hết cho viết bằng ki hiệu nha bạn)
2. 2^0+2^1+2^2+2^3+...+2^5n-3+2^5n-2+2^5-1
= (2^0+2^1+2^2+2^3+2^4)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1)
=(1+2+4+8+16)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1) chia hết cho 31
chứng minh răng 3^5n+2 +3^5n+1 - 3^5n chia hết cho 11 n thuộc N
\(3^{5n+2}+3^{5n+1}-3^{5n}=3^{5n}\left(3^2+3-1\right)=11.3^{5n}⋮11\)
\(3^{5n+2}+3^{5n+1}-3^{5n}(n\in N^*)\\=3^{5n}\cdot3^2+3^{5n}\cdot3-3^{5n}\\=3^{5n}\cdot(3^2+3-1)\\=3^{5n}\cdot11\)
Vì \(3^{5n}\cdot11\vdots11\)
nên biểu thức \(3^{5n+2}+3^{5n+1}-3^{5n}\vdots11\)
chứng minh rằng 2^0 + 2^1 + 2^2 + ...+2^5n-3 + 2^5n-2 +2^5n-1 chia hết cho 31 nếu n là só nguyên dương bất kì
Chứng minh:
a) 20 + 21 + 22 + ... + 25n - 3 + 25n - 3 + 55n -1 chia hết cho 31
Đặt A = 20 + 21 + 22 + 23 + 24 + 25 + ..... +25n-6 + 25n-5 + 25n-4 + 25n-3 + 25n-2 + 25n-1
=> A = ( 20 + 21 + 22 + 23 + 24 + 25 ) + ..... + ( 25n-6 + 25n-5 + 25n-4 + 25n-3 + 25n-2 + 25n-1 )
=> A = 20 ( 1 + 21 + 22 + 23 + 24 ) + ..... + 25n-6 ( 1 + 21 + 22 + 23 + 24 )
=> A = 1.31 + 25 .31 + ..... + 25n-6.31
=> A = 31.( 1 + 25 + ..... + 25n-6 )
Vì 31 ⋮ 31 => A ⋮ 31 ( đpcm )
Cho B = 1 + 2 + 22 + 23 + 24 + 25 + ... + 25n - 3 + 25n - 2 + 25n - 1
Chứng minh rằng B chia hết cho 31
Chứng minh:
a) 20 + 21 + 22 + ... + 25n - 3 + 25n - 3 + 55n - 1 chia hết cho 31
b) Chứng minh tổng, hiệu sau chia hết cho 7:
22x - y
8x + 2y
11x + 10y
Chứng minh:
20+21+22+...+25n-3+25n-2+25n-1 chia hết cho 31
(nếu n là số nguyên bất kì)
\(\text{Đặt }A=\left(2^0+2^1+2^2+2^3+2^4\right)+...+\left(2^{5n-5}+2^{5n-4}+2^{5n-3}+2^{5n-2}+2^{5n-1}\right)\)
\(=\left(1+2 +4+8+16\right)+...+2^{5n-5}.\left(2^0+2^1+2^2+2^3+2^4\right)\)
\(=31+...+2^{5n-5}.31\)
\(=31.\left(1+...+2^{5n-5}\right)\text{chia hết cho 31}\left(đpcm\right)\)
chứng minh A = n^5 + 5n^4 + 5n^3 - 5n^2 - 6n chia hết cho 120
A = n ( n^4 + 5n^2 - 5n - 6 )
5n+5n.52=650
5n(1+52)=650
5n.26=650
=>5n=650:26
=>5n=25=52
=>n=2
Chứng tỏ
(3^5n+2)+(3^5n+1)-(3^5n) chia hết cho 11
35n+2+35n+1-35n
=35n.32+35n.31-35n
=35n.9+35n.3-35n
=35n.(9+3-1)
=35n.11 chia hết cho 11
=> 35n+2+35n+1-35n chia hết cho 11