Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Habin_ Ngốc
Xem chi tiết
Lê Chí Cường
30 tháng 4 2016 lúc 10:00

Đề thế này phải ko bạn: 

Chứng minh rằng: \(x^5+y^5\ge x^4.y+x.y^4\)với \(x,y\ne0\)\(x+y\ge0\)

Lê Chí Cường
30 tháng 4 2016 lúc 9:58

bạn vào fx viết lại đề đi nha, sai đề rùi

Lê Chí Cường
30 tháng 4 2016 lúc 10:09

Ta có: \(x^5+y^5\ge x^4.y+x.y^4\)(1)

<=>\(x^5+y^5-x^4.y-x.y^4\ge0\)

<=>\(\left(x^5-x^4.y\right)-\left(x.y^4-y^5\right)\ge0\)

<=>\(x^4.\left(x-y\right)-y^4.\left(x-y\right)\ge0\)

<=>\(\left(x^4-y^4\right).\left(x-y\right)\ge0\)

<=>\(\left[\left(x^2\right)^2-\left(y^2\right)^2\right].\left(x-y\right)\ge0\)

<=>\(\left(x^2+y^2\right).\left(x^2-y^2\right).\left(x-y\right)\ge0\)

<=>\(\left(x^2+y^2\right).\left(x+y\right).\left(x-y\right).\left(x-y\right)\ge0\)

<=>\(\left(x^2+y^2\right).\left(x+y\right).\left(x-y\right)^2\ge0\)

Vì \(x^2+y^2\ge0,\left(x-y\right)^2\ge0\)

=>(1)<=>\(x+y\ge0\)(2)

Vì \(x+y\ge0\)(theo giả thiết)

=>(2) đúng với mọi x,y

Vì các dấu"<=>" có giá trị như nhau

=>(1) đúng với mọi x,y

=>ĐPCM

SANRA
Xem chi tiết
nguyễn thu hoài
Xem chi tiết
Nguyen Thi Huyen
16 tháng 8 2018 lúc 14:21

Ta xét 2 trưởng hợp:

+) n là số chẵn

Vì n chẵn \(\Rightarrow n\) \(⋮\) \(2\)

\(\Rightarrow n\left(n+5\right)⋮2\)

+) n là số lẻ

Vì n lẻ \(\Rightarrow\left(n+5\right)\) là số chẵn

\(\Rightarrow n\left(n+5\right)⋮2\)

Vậy với mọi n thì \(n\left(n+5\right)⋮2.\)

otomit
16 tháng 8 2018 lúc 14:29

Có hai trường hợp

1 . với k là số chẵn (2k với k thuộc N) ta có 2k1. (2k + 5)

= 4k\(^2\) + 10k

= 2.(2k\(^2\) + 5k) chia hết cho hai

2 . với k là số lẻ (2k + 1 với k thuộc N) ta có ( 2k + 1) (2k + 1 + 5)

= 2k.(2k + 6) + 2k + 6

= 4k\(^2\) + 12k + 2k + 6

= 2. (2k\(^2\) + 6k + k + 3) chia hết cho hai

Shiro
Xem chi tiết
Vũ Cẩm Tú
Xem chi tiết
Vũ Hải Lâm
15 tháng 11 2018 lúc 22:20

Gọi (2n+5,6n+11)=d(d\(\inℕ^∗\))

\(\Rightarrow\)2n+5\(⋮\)d

         6n+11\(⋮\)d

\(\Rightarrow\)12n+30\(⋮\)d

          12n+22\(⋮\)d

\(\Rightarrow\)(12n+30-12n-22)\(⋮\)d

\(\Rightarrow\)8\(⋮\)d

\(\Rightarrow\)d\(\in\)Ư(8)={1,2,4,8}

Mà ta thấy 2n+5 và 6n+11 là hai số lẻ nên ƯCLN(2n+5,6n+11)=lẻ

\(\Rightarrow\)d=lẻ=1

Vậy 2n+5 và 6n+11 nguyên tố cùng nhau (đfcm)

Phan Tiến Đạt
15 tháng 11 2018 lúc 22:43

Gọi (2n + 5 , 6n + 11) = d   (d thuộc N*)

=>   2n + 5 \(⋮\)d

       6n + 11 \(⋮\)d

=>  3(2n + 5) \(⋮\)d

       6n + 11  \(⋮\)d

=>   6n + 15  \(⋮\)d

       6n + 11   \(⋮\)d

=> (6n + 15) - (6n + 11)  \(⋮\)d

=> 6n + 15 - 6n - 11  \(⋮\)d

=> 15 - 11    \(⋮\)d    

=> 4        \(⋮\)d               

=> d​  \(\in\) Ư(4)

Mà ta thấy 2n + 5 và 6n + 11 là số lẻ

Vậy d  \(\in\) Ư(4) là số lẻ 

Mà Ư(4) là số lẻ là {1}  => d = 1

Vậy (2n + 5 , 6n + 11) = 1   hay 2n + 5 và 6n + 11 là 2 số nguyên tố cùng nhau

Lê Na
Xem chi tiết
Mạc Nhược Khánh Nghi
Xem chi tiết
Tạ Thị Phương Thảo
14 tháng 2 2019 lúc 11:13

a, 2x+2y/x+y=2

=> 2(x+y)/x+y=2

=>2/1=2

=> đpcm

Câu b thì mình nghĩ nó không thể bằng được đâu bạn

Yuki_Kali_Ruby
Xem chi tiết
Nguyễn Thị Thanh Ngọc
19 tháng 12 2015 lúc 15:00

S=(1+2)+(22+23)+.....+(26+27)

S=   3   +22(1+2)+....+26(1+2)

S=   3   +22.3+.....+26.3

S=   3(1+22+.....+26)chia hết cho 3

Tick mình đầu tiên nha

Phan Vũ Như Quỳnh
Xem chi tiết
Lê Quang Phúc
27 tháng 10 2017 lúc 18:18

a) Gọi ƯCLN của 2n + 1 và 6n + 5 là d.

=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 5 - (6n + 3) chia hết cho d

=> 2 chia hết cho d.

Mà 2n + 1 là số lẻ không chia hết cho d => d = 1

=> 2n + 1 và 6n + 5 là một cặp số nguyên tố.

b) Gọi ƯCLN của 3n + 2 và 5n + 3 là d

=> 15n + 10 chia hết cho d và 15n + 9 chia hết cho d

=> 15n + 10 - (15n + 9) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 3n + 2 và 5n + 3 là một cặp số nguyên tố (đpcm)