\(\left|-1\frac{5}{6}\right|-\left|+\frac{3}{18}\right|\cdot\sqrt{81}+\sqrt{\frac{9}{24}}\)
thuc hien tinh toan
a)\(\left|\frac{-15}{6}\right|-\left|\frac{3}{18}\right|\cdot\sqrt{81}+\sqrt{\frac{9}{64}}\)
b) \(\frac{6^{15}\cdot9^{10}}{3^{34}\cdot2^{13}}\)
a) \(\left|\frac{-15}{6}\right|-\left|\frac{3}{18}\right|.\sqrt{81}+\sqrt{\frac{9}{64}}\)
\(=\frac{15}{6}-\frac{1}{6}.9+\frac{3}{8}\)
\(=\frac{15}{6}-\frac{9}{6}+\frac{3}{8}\)
\(=1+\frac{3}{8}\)
\(=\frac{11}{8}\)
b) \(\frac{6^{15}.9^{10}}{3^{34}.2^{13}}=\frac{\left(2.3\right)^{15}.\left(3^2\right)^{10}}{3^{34}.2^{13}}=\frac{2^{15}.3^{15}.3^{20}}{3^{34}.2^{13}}=2^2.3=12\)
a/ \(\left|\frac{-15}{6}\right|-\left|\frac{3}{18}\right|.\sqrt{81}+\sqrt{\frac{9}{64}}\)
= \(\frac{15}{6}-\frac{3}{18}.9+\frac{8}{8}\)
= \(\frac{15}{6}-\frac{3}{2}+\frac{3}{8}\)
= \(\frac{60-36+9}{24}=\frac{33}{24}=\frac{11}{8}\)
b/ \(\frac{6^{15}.9^{10}}{3^{34}.2^{13}}=\frac{\left(2.3\right)^{15}.\left(3^2\right)^{10}}{3^{34}.2^{13}}\) \(=\frac{2^{15}.3^{15}.3^{20}}{3^{34}.2^{13}}=\frac{2^2.3^{35}}{3^{34}}=\frac{4.3}{1}=12\)
\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(0.1\cdot\sqrt{\left(-3\right)^2}\cdot\left[6\sqrt{\left(\frac{1}{3}\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\right]^2\)
\(\left(\frac{3\sqrt{2}+\sqrt{6}}{\sqrt{12}+2}-\frac{\sqrt{54}}{3}\right)\cdot\frac{2}{\sqrt{6}}\)
\(\left(\frac{3+2\sqrt{3}}{\sqrt{3}+2}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\right)\div\left(1\div\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
Bài 1: Thực hiện phép tính:
a,\(\left(\frac{-3}{4}+\frac{2}{7}\right):\frac{2}{7}+\left(\frac{-1}{4}+\frac{5}{7}\right):\frac{2}{3}\)
b,\(\left(-\frac{1}{3}\right)^2\cdot\frac{4}{11}+\frac{7}{11}\cdot\left(-\frac{1}{3}\right)^2\)
c, \(\left(-\frac{1}{7}\right)^0-2\frac{4}{9}\cdot\left(\frac{2}{3}\right)^2\)
d,\(\frac{2^7\cdot9^2}{3^3\cdot2^5}\)
e,\(\left(\frac{1}{3}-\frac{5}{6}\right)^2+\frac{5}{6}:2\)
f,\(\left(9\frac{2}{4}:5,2+3.4\cdot2\frac{7}{34}\right):\left(-1\frac{9}{16}\right)\)
g,\(\sqrt{25}-3\sqrt{\frac{4}{9}}\)
h,\(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}\)
i,\(\left(-\frac{1}{2}\right)^4+\left|-\frac{2}{3}\right|-2007^0\)
k,\(\left(-2\right)^3+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+\left|-64\right|\)
m,\(\left(-3\right)^2\cdot\frac{1}{3}-\sqrt{49}+\left(-5\right)^3:\sqrt{25}\)
n,\(\frac{\sqrt{3^2+\sqrt{39^2}}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}\)
A=\(\frac{15}{34}+\frac{7}{21}+\frac{9}{34}-1\frac{15}{17}+\frac{2}{3}\)
B=\(16\frac{2}{7}:\left(-\frac{3}{5}\right)-28\frac{2}{7}:\left(-\frac{3}{5}\right)\)
C=\(25\cdot\left(-\frac{1}{3}\right)^3+\frac{1}{5}-2\cdot\left(-\frac{1}{2}\right)^2-\frac{1}{2}\)
D=\(\left(-2\right)^3\cdot\left(\frac{3}{4}-0,25\right):\left(2\frac{1}{4}-1\frac{1}{6}\right)\)
E=\(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
F=\(\left(-\frac{3}{2}\right)^2+|-\frac{5}{6}|-1\frac{1}{2}:6\)
\(A=\frac{15}{34}+\frac{7}{21}+\frac{9}{34}-1\frac{15}{17}+\frac{2}{3}=\frac{15}{34}+\frac{7}{21}+\frac{9}{34}-\frac{64}{34}+\frac{14}{21}=\left(\frac{15}{34}+\frac{9}{34}-\frac{64}{34}\right)+\left(\frac{7}{21}+\frac{14}{21}\right)=\frac{30}{34}+\frac{21}{21}=\frac{15}{17}+1=\frac{32}{17}\)
bài1
d)\(\left(-45,7\right)+[\left(+5,7\right)+\left(+5,75\right)+\left(-0,75\right)]\)
e)\(11,26-5,13\div\left(5\frac{5}{18}-1\frac{8}{9}\cdot1,25+1\frac{16}{63}\right)\)
j)\(\sqrt{8^2+6^2}\sqrt{16}+\frac{1}{2}\cdot\sqrt{\frac{4}{5}}\)
h)\(\left(-1+3\frac{2}{5}+\frac{1}{4}\right)\cdot\left(-4\right)\)
cac ban giupmminh nha ngay mai minh kiem tra mon toan
d) \(\left(-45,7\right)+\left[\left(+5,7\right)+\left(+5,75\right)+\left(-0,75\right)\right]\)
\(=\left(-45,7\right)+\left[5,7+5,75-0,75\right]\)
\(=\left(-45,7\right)+5,7+5,75-0,75\)
\(=\left[\left(-45,7+5,7\right)\right]+\left[5,75-0,75\right]\)
\(=-40+5=-35\)
e) \(11,26-5,13:\left(5\frac{5}{18}-1\frac{8}{9}\cdot1,25+1\frac{16}{63}\right)\)
\(=11,26-5,13:\left(\frac{95}{18}-\frac{17}{9}\cdot\frac{5}{4}+\frac{79}{63}\right)\)
\(=11,26-5,13:\left(\frac{95}{18}-\frac{85}{36}+\frac{79}{63}\right)\)
\(=\frac{563}{50}-\frac{513}{100}:\frac{1051}{252}\)
\(=\frac{563}{50}-\frac{513}{100}\cdot\frac{252}{1051}\)
\(=\frac{563}{50}-\frac{129276}{105100}=\frac{21083}{2102}\)
Số lớn quá!
j) \(\sqrt{8^2+6^2}\cdot\sqrt{16}+\frac{1}{2}\cdot\sqrt{\frac{4}{5}}\)
\(=\sqrt{64+36}\cdot\sqrt{16}+\frac{1}{2}\cdot\sqrt{\frac{4}{5}}\)
\(=\sqrt{100}\cdot4+\frac{1}{2}\cdot\frac{2\sqrt{5}}{5}\)
\(=10\cdot4+\frac{\sqrt{5}}{5}=40+\frac{\sqrt{5}}{5}=\frac{200+\sqrt{5}}{5}\)
h) Cái đây mình có làm rồi
1) \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
2) \(0.1\sqrt{\left(-3\right)^2}\cdot\left[6\sqrt{\left(-\frac{1}{3}\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\right]^2\)
3) \(\left(\frac{3+2\sqrt{3}}{\sqrt{3}+2}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\right)\div\left(1\div\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
4) \(\left(\frac{3\sqrt{2}+\sqrt{6}}{\sqrt{12}+2}-\frac{\sqrt{54}}{3}\right)\cdot\frac{2}{\sqrt{6}}\)
5) \(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
\(=\sqrt{\frac{3+2\sqrt{3}\sqrt{2}+2}{3-2\sqrt{3}\sqrt{2}+2}}+\sqrt{\frac{3-2\sqrt{3}\sqrt{2}+2}{3+2\sqrt{3}\sqrt{2}+2}}\)
\(=\sqrt{\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)^2}}+\sqrt{\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}+\sqrt{3}\right)^2}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)}+\frac{\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)}\)\
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}\right)^2+\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\frac{5+2\sqrt{6}+5-2\sqrt{6}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=10\)
\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(=\sqrt{3}+2+\sqrt{2}-\sqrt{2}-3\)
\(=\sqrt{3}-1\)
Tính giá trị biểu thức
a,\(A=\frac{24\cdot47-23}{24+47-23}\cdot\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{\frac{9}{1001}-\frac{9}{13}+\frac{9}{7}-\frac{9}{11}+9}\)
b,\(M=\frac{1+2+2^2+2^3+...+2^{2012}}{2^{2014}-2}\)
c,\(A=81\cdot\left[\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right]:\frac{158158158}{711711711}\)
d,\(A=\frac{5\cdot\left(2^2.3^2\right)^9\cdot\left(2^2\right)^6-2\cdot\left(2^2\cdot3\right)^{14}\cdot3^4}{5\cdot2^{28}\cdot3^{18}-7\cdot2^{29}\cdot3^{18}}\)
\(\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{35}\right)\cdot\left(-\frac{4}{15}\right)}{\left(\frac{1}{10}+\frac{3\sqrt{2}}{25}-\frac{\sqrt{2}}{5}\right)\cdot\frac{5}{7}}\)
giải hệ phương trình: A, \(\frac{1}{x}+\frac{1}{y}=9\) và \(\left(\frac{1}{\sqrt[3]{x}}+\frac{1}{\sqrt[3]{y}}\right)\cdot\left(\frac{1}{\sqrt[3]{x}}+1\right)\cdot\left(\frac{1}{\sqrt[3]{y}}+1\right)=18\)
B,\(3x^2-y=0\) và \(\left(\sqrt{5x^3-4}+2\sqrt[3]{7x^2-1}\right)\cdot\frac{y+4}{3}=2\cdot\left(y+19\right)\)