Cho tam giác ABC vuông tại A có B=30 độ ,AB=6cm
a, giải tam giác vuông ABC
Cho tam giác ABC vuông tại A , góc B = 30 độ , AB = 6cm.
a) giải tam giác ABC.
b) vẽ đường cao AH , trung tuyến AM của tam giác ABC. Tính diện tích tam giác AHM.
Tam giác ABC vuông tại A. Giải tam giác vuông ABC trong các trường hợp sau: a, c= 4cm, B= 30 độ b, a= 6cm, C= 40 độ c, b= 4cm, C= 45 độ
a: góc C=90-30=60 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin60=căn 3/2
=>BC=4*2/căn 3=8/căn 3(cm)
=>AC=4/căn 3(cm)
b: góc B=90-40=50 độ
Xét ΔABC vuông tại A có sin B=AC/BC
=>AC=6*sin50\(\simeq5\left(cm\right)\)
=>\(AB\simeq3,32\left(cm\right)\)
c: góc B=90-45=45 độ
Xét ΔABC vuông tại A có góc b=45 độ
nên AB=AC=4cm
=>BC=4căn 2(cm)
cho tam giác vuông tại Acó \(\widehat{B}=30\)độ , AB = 6cm
a)giải tam giác vuông ABC
b) vẽ đường cao AH và trung tuyến AM của tam giác ABC .tính diện tích tam giác AHM
a)xét \(\Delta\)ABC vuông tại A có
\(\widehat{B}+\widehat{C}=90'\Rightarrow\widehat{C}=90'-30'=60'\)
\(\sin C=\frac{AB}{BC}\Rightarrow BC=\frac{AB}{\sin B}=\frac{6}{\sin30'}=12\left(cm\right)\)
\(\tan B=\frac{AC}{AB}\Rightarrow AC=AB.\tan B=6.\tan30'=2\sqrt{3}\left(cm\right)\)
b)Xét \(\Delta ABC\left(\widehat{BAC}=90'\right)AHvuôngócBC\)
\(AB^2=BC.HB\Rightarrow HB=\frac{AB^2}{BC}=\frac{6^2}{12}=3cm\)
\(AH.BC=AB.AC\)
\(\Rightarrow AH=\frac{AB.AC}{BC}=6.2\sqrt{3}=12\sqrt{3}cm\)(1)
VÌ AM LÀ ĐƯỜNG TRUNG TUYẾN CỦA TG ABC NÊN
\(MB=MC=\frac{BC}{2}=\frac{12}{2}=6cm\)
MÀ\(MB=MH+HB\)
\(\Rightarrow MH=MB-HB=6-3=3cm\)(2)
TỪ (1)và (2) SUY RA
\(S\Delta AHM=\frac{1}{2}AH.HM=\frac{1}{2}.12\sqrt{3}.3=18\sqrt{3}\approx31.18\left(cm^2\right)\left(do\Delta AHMvuôngtạiH\right)\)
Cho tam giác ABC vuong tại A, có góc B=30o, AB=6cm
a) Giải tam giác vuông ABC
b) Vẽ đường cao AH và trung tuyến AM của tam giác ABC. Tính diện tích tam giác AHM,
Cho tam giác ABC vuông tại A có góc B = 30 độ, AB = 6cm
a) Giải tam giác vuông ABC
b) Kẻ đường cao AH và trung tuyến AM của tam giác ABC. Tính diện tích tam giác AHM
a: \(\widehat{C}=60^0\)
\(AC=6\sqrt{3}\left(cm\right)\)
\(BC=12\sqrt{3}\left(cm\right)\)
cho tam giác abc,có cạnh ab=6cm,cạnh ac=8cm.cạnh bc=10cm
a chứng minh tam giác abc vuông tại a
b giải tam giác vuông abc
cho tam giác abc,có cạnh ab=6cm,cạnh ac=8cm.cạnh bc=10cm
a chứng minh tam giác abc vuông tại a
b giải tam giác vuông abc
a) Ta có AB^2+AC^2=6^2+8^2=100=10^2=BC^2
Vậy tam giác ABC vuông b)theo mình thì chứng minh da=de mới đúng
Xét tam giác BAD và tam giác BED có ^BAD=^BED(=90 độ)
Cạnh BD chung ^ABD=^DBE( hai tia phân giác )
Vậy tam giác BAD =tam giác BED =>AD=ED
Bài 1.Tam giác ABC vuông tại A, có AB = 21cm, \(\widehat{C}\) = 40°, phân giác BD của góc ABC, D ∈ AC. Tính
a) độ dài đoạn thẳng AC, BC
b) độ dài đoạn thẳng BD
Bài 2. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 25cm, HC = 64cm. Tính \(\widehat{B},\) \(\widehat{C}\)
Bài 3. Cho tam giác ABC vuông tại A có \(\widehat{B}\) = 30 °, AB = 6cm
a) Giải tam giác vuông ABC
b) Vẽ đường cao AH và trung tuyến Am của tam giác ABC. Tính diện tích tam giác AHM
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)
Cho tam giác ABC vuông tại A. Giải tam giác vuông ABC trong các trường hợp sau:
a) BC = 10cm,góc C= 30 độ. b) AB=8cm và góc B=30 độ ?
a: \(\widehat{B}=90^0-30^0=60^0\)
XétΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
nên AB=5cm
=>\(AC=5\sqrt{3}\left(cm\right)\)
b: \(\widehat{C}=90^0-30^0=60^0\)
Xét ΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
hay \(BC=16\sqrt{3}\left(cm\right)\)
=>\(AC=8\sqrt{3}\left(cm\right)\)