Tìm số tự nhiên a . Biết khi chia cho 13 được thương là 7 và số dư là a
Tìm số tự nhiên a biết khi 94 chia cho 13 được thương là 7 và có dư là a
Cho abc chia hết cho 3.Cho biết số này ít nhất nhưng số liên tiếp để được số chia hết cho 9
Giúp mình bài này nha
Tìm số tự nhiên a . Biết khi chia cho 13 được thương là 7 và số dư là a
Ai nhanh nhất mk k
Số dư bao giờ cũng nhỏ hơn số chia => a thuộc {1; 2; 3; ...; 12}
Tìm hai số tự nhiên biết tổng của chúng là 2016, số lớn chia cho số bé được thương là 64 số dư là 1.
Tìm hai số tự nhiên biết hiệu của chúng là 158, số lớn chia cho số bé được thương là 2 số dư là 60.
Tìm số tự nhiên a biết a chia 4 dư 3, chia 5 dư 4, chia 6 dư 5.
nhieu qua h cho mik da mik moi tra loi
Tìm hai số tự nhiên biết tổng của chúng là 2016, số lớn chia cho số bé được thương là 64 số dư là 1.
Tìm hai số tự nhiên biết hiệu của chúng là 158, số lớn chia cho số bé được thương là 2 số dư là 60.
Tìm số tự nhiên a biết a chia 4 dư 3, chia 5 dư 4, chia 6 dư 5.
Tìm số tự nhiên a <= 200. Biết rằng khi chia a cho số tự nhiên b thì được thương là 4 và dư 35.
Hai số tự nhiên có hiệu là 133 và biết khi lấy số lớn chia cho số bé thì được thương là 4 và số dư là 19. Tìm số lớn.
Ta có sơ đồ:
Số lớn: [-----][-----][-----][-----][19]
Số bé: [-----]...........133.............
Số lớn là: (133-19):(4-1)x4+19=171
Đ/s: 171.
MỌI NGƯỜI CHỈ EM BÀI VỚI Ạ!!! EM CẢM ƠN❤
a) Tìm số tự nhiên b, biết rằng: Nếu chia 129 cho số b ta được số dư là 10 và chia 61 cho số b ta được số dư cũng là 10.
b) Tìm số tự nhiên a, biết rằng: Khi chia số a cho 14 ta được thương là 5 và số dư lớn nhất trong phép chia ấy.
\(129-10=119⋮b\)
\(61-10=51⋮b\)
=> b là ước chung của 119 và 51 => b=17
b/
Số dư lớn nhất cho 1 phép chia kém số chia 1 đơn vị
Số dư trong phép chia này là
14-1=13
\(\Rightarrow a=14.5+13=83\)
a) gọi số chia cần tìm là b ( b > 10)
Gọi q1 là thương của phép chia 129 cho b
Vì 129 chia cho b dư 10 nên ta có:129 = b.q1 + 10 ⇒ b.q1 =119 = 119.1 =17.7
Gọi q2 là thương của phép chia 61 chia cho cho b
Do chia 61 cho b dư 10 nên ta có 61 = b.q2 +10⇒ b.q2 = 51 = 1.51 = 17.3
Vì b < 10 và q1 ≠ q2 nên ta dược b = 17
Vậy số chia thỏa mãn bài toán là 17.
Tìm hai số tự nhiên biết số lớn chia cho số bé được thương là 3 dư 7 và hiệu của các số đó là 257
Ta có sơ đồ :
Số bé : I-----I
Số lớn : I-----I-----I-----I---I
(Chỗ ngắn ứng với 7 đơn vị)
Số bé là
(257-7):(3-1)x1=125
Số lớn là
125+257=382
Hai số tự nhiên có tổng là 258 và biết khi lấy số lớn chia cho số bé thì được thương là 2 và số dư là 21. Tìm số bé.
gọi a là số lớn, b là số bé
theo đề bài ta có a+b=258 (*)
\(\frac{a}{b}\)=2 dư 21
=> a=2b-21
thay a=2b-21 vào (*) ta được:
2b+21+b=258
=>3b=237
=>b=79
vậy số bé là 79
SL = SB x 2 + 21
Coi số bé là 1 phần thì số lớn là 2 phần và 21 đơn vị . Vậy tổng số phần bằng nhau là : 1 + 2 = 3 ( phần )
Số bé là : ( 258 - 21 ) : 3 = 79