Chứng minh rằng \(A=10^n+18n-1\) chia hết cho 81
chứng minh rằng:
a) 2n + 11...1(n chữ số) chia hết cho 3.
b) 10 ^ n + 18n - 1 chia hết cho 27.
c) 10 ^ n + 72n - 1 chia hết cho 81.
Chứng minh rằng :
a) 2n + 11...1 ( n chữ số ) chia hết cho 3 .
b) 10n + 18n - 1 chia hết cho 27 .
c) 10n + 72n - 1 chia hết cho 81 .
a)Ta thấy 11..11 có tổng các chữ số là n.Ta có:
2n+11...1=2n+n=3n chia hết cho 3
Chứng minh rằng:
a)10^28 + 8 chia hết cho 72
b)8^8+2^20 chia hết cho 17
c)10^n+18n+1chia hết cho 27
d)10^n +72n -1 chia hết cho 81
d) \(10^n+72n-1\)\(=100...0-1+72n\)
=\(999...9-9n+81n\)
n chữ số 9
=\(9.\left(111...1-n\right)+81n\)
VÌ 1 số và tổng các chữ số có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết 9
mà 81n chia hết 9 => 10n + 72n -1 chia hết 9
b) \(10^n+18n-1\)
<=> \(100..0+\left(27n-9n\right)-1\)chia hết \(27\)
n
<=> \(\left(100...0-1-9n\right)+27n\)chia hết \(27\)
n
<=> \(\left(99...9-9n\right)+27n\)chia hết \(27\)
n
<=> \(9.\left(11..1-n\right)+27n\)chia hết \(27\)
<=> \(9.9k+27n\)chia hết \(27\)
<=> \(81k+27n\)chia hết \(27\)
a) \(10^{28}+8\)chia hết cho 72
\(\Rightarrow10^{28}:9\)dư 1
\(\Rightarrow8:9\)dư 8
\(\Rightarrow1+8=9\)chia hết cho 9
\(\Rightarrow10^{28}+8\)chia hết cho 9 ( 1 )
\(10^{28}\)chia hết cho 8 ( vì 3 sớ tận cùng là 000 chia hết cho 8 )
8 chia hết cho 8
\(\Rightarrow10^{28}+8\)chia hết cho 8 ( 2 )
Từ ( 1 ) và ( 2 ) kết hợp với UCLN ( 8 ; 9 ) = 1 => ĐPCM
b) \(8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}.\left(2^4+1\right)=2^{20}.17\)chia hết cho 7 => ĐPCM
c) Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
d
Chứng minh rằng
D = 10n + 72n - 1 chia hết cho 81
E = 10n + 18n -1 chia hết cho 27
Chứng minh A = 10n+18n-1 chia hết cho 81.
10n+72n−1=10n−1n−9n+81n
=9(10n-1+10n-2+⋯+10+1−n)+81n
(1)
Mặt khác:10n-1+10n-2+⋯+10+1−n≡n−n≡0(mod9)
(2)
Từ (1),(2) =>đpcm
Chứng minh rằng
D = 10n + 72n - 1 chia hết cho 81
E = 10n + 18n -1 chia hết cho 27
Giúp với mọi người ơi! Khẩn cấp, khẩn cấp!!!
Chứng minh rằng A=10^n+18n-1 chia hết cho 81 (n là số tự nhiên)
Cái này mình làm không chắc chắn đâu nha !
10^n lúc nào chia 9 cũng dư 1(100 : 9 dư 1; 1000 chia 9 dư 1.....)
18 chia hết cho 9 => 18n chia hết cho 9
Vậy A= 10^n+18n-1 chia hết cho 9
Mà số chia hết cho 9 là chia hết cho 81 nên A chia hết cho 81
chúng minh A là số chính phương mà chia hết cho 9 ý
chứng minh A=10n+18n-1 chia hết cho 81(n thuộc N)
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
Chứng minh:
a)10^n+18n-1 chia hết cho 27
b)10^n+72n-1 chia hết cho 81.
Ai nhanh mình tk cho!
a,Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
b,Ta có:
10^n+72n-1
=10^n-1+72n
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)