Chứng tỏ rằng tích cảu ba số chẵn liên tiếp chia hết cho 48
chứng tỏ rằng:
a)tích hai số chẵn liên tiếp thì chia hết cho 8.
b)tích ba số chẵn liên tiếp thì chia hết cho 48
A)Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có:
2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
=>k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=>4k(k+1) chia hết cho 8(ĐPCM)
Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
=> 4k(k+1) chia hết cho 8
chứng tỏ rằng tích của ba số tự nhiên chẵn liên tiếp chia hết cho 48
Ta có ví dụ sau
4.6.8=192 chia hết cho 48
Gọi ba số chẵn tự nhiên liên tiếp là 2k,2k+2,2k+4 (k \(\in\)N)
Ta có: 2k.(2k+2).(2k+4) = 8k.(k+1)(k+2)
Mà (k+1)(k+2) là tích 2 số tự nhiên liên tiếp => (k+1)(k+2) chia hết cho 6 => 8k(k+1)(k+2) chia hết cho 8.6 = 48
bn tran bao ngoc lạc trôi rồi nhé ! CM co mak bn !
Chứng tỏ rằng
Tích của ba số tự nhiên chẵn liên tiếp chia hết cho 48
gọi tích 3 só tự nhiên chẵn liên tiếp là : 2a , 2a + 2 + 2a + 4 . ta thấy :
2a . ( 2a + 2 ) . ( 2a + 4 ) = 8a . ( a + 1 ) . ( a + 2 )
nếu a là số chẵn thì a và a + 2 sẽ chia hết cho 2
nếu a là số lẻ thì a + 1 chia hết cho 2
=> a . ( a + 1 ) . ( a + 2 ) chia hết cho 2
nếu a chia 3 dư 1 thì a + 2 sẽ chia hết cho 3
nếu a chia 3 dư 2 thì a + 1 sẽ chia hết cho 3
=> a . ( a + 1 ) . ( a + 2 ) chia hết cho 3
từ những lập luận trên , ta được : a. ( a + 1 ) . ( a + 2 ) chia hết cho 6
=> a. ( a + 1 ) . ( a + 2 ) chia hết cho cả 6 và 8 => cũng chia hết cho 48
KL : 2a . ( 2a + 2 ) . ( 2a + 4 ) chia hết cho 48
vậy tích 3 số tự nhiên chẵn liên tiếp sẽ chia hết cho 48
a) Chứng minh rằng: Tích của hai số chẵn liên tiếp thì chia hết cho 8
b) Chứng minh rằng: Tích của ba số chẵn liên tiếp thì chia hết cho 48
c) Chứng minh rằng: Tích của bốn số chẵn liên tiếp thì chia hết cho 384
bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên
gọi 2 số chẵn liên tiếp đó là: 2k,2k+2
2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8
gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4
2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)
k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)
từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1
câu c, tương tự vậy
ASDWE RHTYJNHWSAVFGB
Chứng tỏ rằng tích 3 số chẵn liên tiếp chia hết cho 48.
Trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 6;4;2 nên tích đó chia hết cho 2.4.6 = 48
Tick nha
Chứng tỏ rằng tích của 3 số tự nhiên chẵn liên tiếp ( chia hết ) cho 48
Bài 5:
a) Chứng tỏ rằng tích của hai số chẵn liên tiếp chia hết cho 8.
b) Chứng tỏ rằng tích của ba số tự nhiên lên tiếp chia hết cho 6.
a) Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
Chứng tỏ rằng tích của ba số tự nhiên lên tiếp chia hết cho 6.
Chứng minh rằng tích của ba số chẵn liên tiếp thì chia hết cho 48.
Gọi 3 số chẵn cần tìm là: \(2a-2;2a;2a+2\) ( a thuộc N*)
Ta có: \(\left(2a-2\right)2a\left(2a+2\right)=2.\left(a-1\right)2a.2\left(a+1\right)8\left(a-1\right)a\left(a+1\right)\)
Trong 3 số tự nhiên thì chắc chắn có 1 số chia hết cho 2 và 1 số chia hết cho 3.
=> Tích đó chia hết cho 8.2.3=64
a, chứng tỏ rằng tích của hai số chẵn liên tiếp thì chia hết cho 8
b, Chứng tỏ rằng tích cuar ba số tự nhiên liên tiếp thì chia hết cho 6
c, n2 + n -1