cho a b c là 3 số khác 0 và (a+b+c)^2=a^2+b^2+c^2 tính
b=(a^2/a^2+2bc)+(b^2/b^2+2ac)+(c^2/c^2+2ab)
Ch ba số a,b,c khác 0 và ab+bc+ac=0
Tính giá trị của biểu thức A= ((a^2 / (a^2 + 2bc) + b^2 / (b^2 + 2ac) + c^2 / (c^2 + 2ba)) / (bc/(a^2 + 2bc) + ac/(b^2 + 2ac) + ab/(c^2+2ab))
Cho a,b,c khác 0; a2+2bc khác 0 ;b2+2ca khác 0; c2+2ab khác 0 và a2+b2+c2=(a+b+c)2
cmr : S=a2/a2+2bc + b2/b2+2ac + c2/c2+2ab =1
M=bc/a2+2bc + ca/b2+2ac + ab/c2+2ab=1
giúp mk nha
mk cảm ơn nhiều
a2+b2+c2=(a+b+c)2<=> ab+bc+ca=0
\(\Rightarrow S=\frac{a^2}{a^2+bc-\left(ab+ca\right)}+\frac{b^2}{b^2+ac-\left(ab+bc\right)}+\frac{c^2}{c^2+ab-\left(bc+ca\right)}\)
\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(b-c\right)\left(a-b\right)}-\frac{c^2}{\left(b-c\right)\left(c-a\right)}\)
\(=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)-c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
M tương tự
Cho a,b,c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn
a) \(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
b) \(B=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
c) \(C=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
cho ba số a,b,c khac 0 va đôi một khác nhau thỏa mản 1/a + 1/b + 1/c=0
Tính A= a^2/a^2+2bc + b^2/b^2+ 2ac + c^2/c^2+2ab
Giusp mik với please . Mai thi rùi
cho a+b+c=1/2 và (a+b)(b+c)(a+c) khác 0.tính giá trị của biểu thức
P=(2ac+b)/(a+c)2.(2ab+c)/(a+b)2.(2bc+a)/(b+c)2
cho c^2+2ab-2ac-2bc=0
tính P=a^2+(a-c)^2/b^2+(b-c)^2=a-c/b-c
Cho a,b,c là 3 số khác nhau đôi một thỏa mãn \(\left(a+b+c\right)^2=a^2+b^2+c^2\). Tính \(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
Cho a ,b ,c khác nhau đôi một và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) . Rút gọn các biểu thức sau :
A=\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
B=\(\frac{bc+1}{a^2+2bc}+\frac{ca+1}{b^2+2ac}+\frac{ab+1}{c^2+2ab}\)
C=\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
D=\(\frac{a^2+bc}{a^2+2bc}+\frac{b^2+ca}{b^2+2ca}+\frac{c^2+ab}{c^2+2ab}\)
P/S : Sẵn tiện mọi người cho mình hỏi " Đều khác nhau đôi một " là sao ạ ? Mình đọc không hiểu rõ đề cho lắm
a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:
+a khác b
+b khác c
+c khác a
\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)
Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)
\(bc=-\left(ab+ac\right)=-ab-ac\)
\(ac=-\left(ab+bc\right)=-ab-bc\)
Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)
\(c^2+2ab=\left(c-a\right)\left(c-b\right)\)
Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)
ta có 1/a+1/b+1/c=0
=>bc+ac+ab/abc+0
=>bc+ac+ab=0
=>bc=-ac-ab
ac=-bc-ab
ab=-bc-ac
A=1/(a^2+bc-ac-ab)+1/(b^2+ac-bc-ab)+1/(c^2+ab-bc-ac)
=1/c(a-c)-b(a-c)+1/b(b-c)-a(b-c)+1/c(c-b)-a(c-b)
=1/(a-b)(a-c)+1/(b-a)(b-c)+1/(a-c)(c-b)
=b-c-a+c+a-b/(a-c)(a-b)(b-c)=0
('/': dấu gạch ngang ở giữa phân số)