tìm x biết x x x/3 = 24
Tìm X biết: (X x 5 - 19) + (X x 3 + 24) = 125
=>5x-19+3x+24=125
=>8x+5=125
hay x=15
Tìm X biết: (X x 5 - 19) + (X x 3 + 24) = 125
( 5 x − 19 ) + ( 3 x + 24 ) = 125
. 5 x − 19 + 3 x + 24 = 125
8 x + 5 = 125
8 x = 120
x = 15
tìm x biết 24+x/50+x=3/5
tìm x
\(\frac{24+x}{50+x}=\frac{3}{5}\Rightarrow\left(24+x\right)\cdot5=\left(50+x\right)\cdot3\)3
hay \(120+24x=150+50x\)
suy ra 50x-24x=150-120 hay 26x = 30 \(\Rightarrow x=\frac{26}{30}\)
Tìm x, biết: a) x = 1/4 + 5/13 b) x/3 = 2/3 + -1/7 c) x/3 = 16/24 + 24/ 36
d) x/15 = 1/5 + 2/3
\(a)x=\dfrac{1}{4}+\dfrac{5}{13}=\dfrac{33}{52}.\\ b)\dfrac{x}{3}=\dfrac{2}{3}+\dfrac{-1}{7}.\\ \Leftrightarrow\dfrac{x}{3}=\dfrac{11}{21}.\\ \Leftrightarrow\dfrac{7x}{21}=\dfrac{11}{21}.\\ \Rightarrow7x=11.\\ \Leftrightarrow x=\dfrac{11}{7}.\\ c)\dfrac{x}{3}=\dfrac{16}{24}+\dfrac{24}{36}=\dfrac{2}{3}+\dfrac{2}{3}=\dfrac{4}{3}.\\ \Rightarrow x=4.\\ d)\dfrac{x}{15}=\dfrac{1}{5}+\dfrac{2}{3}=\dfrac{13}{15}.\\ \Rightarrow x=13.\)
Tìm x biết x+x/3=24
x+x/3=24
3x/3+x/3=24
3x+x/3=24
x(3+1)=72
4x=72
x=72:4
x=18
Tìm x biết x + x/3 = 24
x + \(\frac{x}{3}=24\)
x( 1 + \(\frac{1}{3}\)) = 24
X x \(\frac{4}{3}=24\)
X = 24 : \(\frac{4}{3}\)
X = \(24x\frac{3}{4}\)
X = 18
\(\Rightarrow x\left(1+\frac{1}{3}\right)=24\)
\(\Rightarrow x\times\frac{4}{3}=24\)
\(\Rightarrow x=18\)
tìm x biết x + x/3 = 24
mọi số tự nhiên đều có thể viết dưới dạng phân số có mâu số là 1
vậy x/1 = x/3 = 24
=> 3x/3 + x/3 = 24
4x/3 = 24
4x = 72
x =18
\(x+\frac{x}{3}=24\)
\(\frac{4x}{3}=24\)
=> \(x=24:\frac{4}{3}=18\)
Tìm x biết:( X x 5 -19) + (X x 3 + 24) = 125
\(\left(5x-19\right)+\left(3x+24\right)=125\)
.\(5x-19+3x+24=125\)
\(8x+5=125\)
\(8x=120\)
\(x=15\)
ta có x *8 =125+19-24
x*8=120
x=120\8
x=15
Tìm x biết : x( x + 1 )( x + 2 )( x + 3 ) = 24
\(\Rightarrow x\left(x+3\right)\left(x+1\right)\left(x+2\right)=24\)
\(\Rightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)=24\)
Đặt \(x^2+3x+1=t\)
\(\Rightarrow\left(t-1\right)\left(t+1\right)=24\)
\(\Rightarrow t^2-1=24\Rightarrow t^2=25\Rightarrow t=5;-5\)
Xét t=5 thì \(x^2+3x+1=5\Rightarrow x^2+3x-4=0\)
\(\Rightarrow x^2-x+4x-4=0\)
\(\Rightarrow x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Rightarrow\left(x+4\right)\left(x-1\right)=0\Rightarrow x=-4;1\)
Xét t=-5 ta có
\(x^2+3x+1=-5\Rightarrow x^2+3x+6=0\)
\(\Rightarrow x_1=\frac{-3+\sqrt{15}i}{2};x_2=\frac{-3-\sqrt{15}i}{2}\)
mà \(x\in Z\)nên x=-4;1