Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Minh Tâm
Xem chi tiết
Trần Tuấn Trọng
Xem chi tiết
Bùi Thị Vân
10 tháng 10 2017 lúc 10:25

\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=\frac{2\left(a-b\sqrt{5}\right)-3\left(a+b\sqrt{5}\right)}{\left(a+b\sqrt{5}\right)\left(a-b\sqrt{5}\right)}\)\(=\frac{-a-5b\sqrt{5}}{a^2-5b^2}=\frac{-a}{a^2-5b^2}+\frac{-5b\sqrt{5}}{a^2-5b^2}\).
Suy ra:
\(\hept{\begin{cases}\frac{-a}{a^2-5b^2}=-9\\-\frac{5b}{a^2-5b^2}=-20\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{9}{4}\\\frac{a}{a^2-5b^2}=-9\end{cases}}\)
\(\frac{a}{b}=\frac{9}{4}\Leftrightarrow\frac{a}{9}=\frac{b}{4}=k\)\(\Rightarrow\hept{\begin{cases}a=9k\\b=4k\end{cases}}\).
Suy ra \(\frac{a}{a^2-5b^2}=\frac{9k}{81k^2-5.16k^2}=\frac{9}{k}=-9\).
Suy ra \(k=-1\).
Vậy \(\hept{\begin{cases}a=9k\\b=4k\end{cases}\Leftrightarrow\hept{\begin{cases}a=-9\\b=-4\end{cases}}}\).

Nguyễn Thiều Công Thành
17 tháng 9 2017 lúc 22:39

a;b có là số nguyên ko

Hoàng_Linh_Nga
9 tháng 10 2017 lúc 22:43

bạn thử quy đồng mẫu của chúng lên xem , vế trái bạn áp dụng hằng đẳng thức số 3 ạ ! 

Trịnh Ánh My
Xem chi tiết
Trương Việt Bắc
Xem chi tiết
Nguyen Tuan Dung
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Ngo Anh
Xem chi tiết
lê thị thủy
Xem chi tiết
Nguyễn Mai Anh
Xem chi tiết