Cho \(\sqrt{5}\) là số vô tỉ, tìm a,b thuộc Z biết :
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
Ai đó bỏ thời gian và giúp mk bài toán này đc không ?
Biết \(\sqrt{5}\)là số vô tỉ. Hãy tìm các số nguyên a,b thỏa mãn :
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
Biết \(\sqrt{5}\)là số vô tỉ hãy tìm các giá trị của a ,b thỏa mãn
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
Cảm ơn đã đọc và làm ơn giải giùm tui
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=\frac{2\left(a-b\sqrt{5}\right)-3\left(a+b\sqrt{5}\right)}{\left(a+b\sqrt{5}\right)\left(a-b\sqrt{5}\right)}\)\(=\frac{-a-5b\sqrt{5}}{a^2-5b^2}=\frac{-a}{a^2-5b^2}+\frac{-5b\sqrt{5}}{a^2-5b^2}\).
Suy ra:
\(\hept{\begin{cases}\frac{-a}{a^2-5b^2}=-9\\-\frac{5b}{a^2-5b^2}=-20\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{9}{4}\\\frac{a}{a^2-5b^2}=-9\end{cases}}\)
\(\frac{a}{b}=\frac{9}{4}\Leftrightarrow\frac{a}{9}=\frac{b}{4}=k\)\(\Rightarrow\hept{\begin{cases}a=9k\\b=4k\end{cases}}\).
Suy ra \(\frac{a}{a^2-5b^2}=\frac{9k}{81k^2-5.16k^2}=\frac{9}{k}=-9\).
Suy ra \(k=-1\).
Vậy \(\hept{\begin{cases}a=9k\\b=4k\end{cases}\Leftrightarrow\hept{\begin{cases}a=-9\\b=-4\end{cases}}}\).
bạn thử quy đồng mẫu của chúng lên xem , vế trái bạn áp dụng hằng đẳng thức số 3 ạ !
Tìm a, b thuộc Z biết
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}\)=-9-\(20\sqrt{5}\)
Có ai không giúp mình bài toán này với !
Cho P(x) = x3 + ax2 + bx - 1 . Xác định số hữu tỉ a và b với x= \(\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\) sao cho P(x) = 0.
tìm a,b tuộc z
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
cho biểu thức P = \(\frac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\frac{\sqrt{a}+3}{\sqrt{a}-2}+\frac{2\sqrt{a}+1}{3-\sqrt{a}}\)đk a >= 0 ; a khác 4 và 9
a, rút gon P
b, tìm a thuộc Z để P thuộc Z
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = $\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}$
Bài 2: Tìm các số thực x$\geq 0$ sao cho E = $\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}$ nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn $\left\{\begin{matrix} \sqrt{x}+\sqrt{y-2}=2\\ \sqrt{y+1}+\sqrt{z-3}=3\\ \sqrt{z+5}+\sqrt{x+3}=5 \end{matrix}\right.$
Bài 4: CMR $2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3$
Bài 5: CMR $\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2$
tìm số nguyên a,b thỏa mãn \(\frac{2}{a+b\sqrt{5}}\)-\(\frac{3}{a-b\sqrt{5}}\)=\(-9-20\sqrt{5}\)
làm hộ nha các bạn .ai giải nhanh và chính xác nhất ,mk đánh đúng cho.
Giúp mình làm bài này với
Bài 1: Tính
A=\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
B=\(\frac{\sqrt{2+\sqrt{3}}}{2}\div\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
C=\(\frac{1}{\sqrt{2}+2}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+...+\frac{1}{99\sqrt{100}+100\sqrt{99}}\)
Bài 2: Giải phương trình:
a. \(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}\sqrt{9x-45}=4\)
b.\(\frac{2\sqrt{x}-7}{3}=\sqrt{x}-1\)
c.\(5\sqrt{x-1}-\sqrt{36x-36}-\sqrt{9x-9}=\sqrt{8x+12}\)
Bài 3: Rút gọn
\(M=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\times\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a-1}}\right)\)
a. Tìm a để M>0
b. Tìm a để M<0