\(\left(\left(x+32\right)-17\right)\cdot2=42\)
\(\left[\left(x+32\right)+117\right]\cdot2=42\)
\(\left[\left(x+32\right)+117\right]\cdot2=42\)
\(\left(x+32\right)+117=42:2\)
\(\left(x+32\right)+117=21\)
\(x+32=21-117\)
\(x+32=-96\)
\(x=-96-32\)
\(x=-128\)
tick đúng nha
1. Tính:
a)\(81^3:3^5\)
b)\(16\cdot2^4\cdot\frac{1}{32}\cdot2^3\)
2. Tìm x:
a) \(\left(x-1\right)^5=32\)
b) \(\left(2^3:4\right)\cdot2^{\left(x+1\right)}=64\)
\(\frac{\left(1,6-x\right)\cdot5,25}{\left(10\frac{5}{9}-7\frac{1}{4}\right)\cdot2\frac{2}{17}}=75\%\)
\(\frac{\left(1,16-x\right)\cdot5,25}{\left(10\frac{5}{9}-7\frac{1}{4}\right)\cdot2\frac{2}{17}}=75\%\)
tìm x
1 ) Tìm x biết
a) \(x^{10}\cdot\left(x^2\right)^{10}\cdot\left(x^3\right)^{10}\cdot...\cdot\left(x^{10}\right)^{10}\)
b)\(\frac{1}{2}\cdot2^x+4\cdot2^x=9\cdot2^5\)
c)\(3\cdot2^{x+2}=5\cdot2^3\)
tìm x biết:
a,\(7,5x:\left(9-6\frac{13}{21}\right)=2\frac{13}{25}\)
b,\(\frac{\left(1,16-x\right)\cdot5,25}{\left(10\frac{5}{9}-7\frac{1}{4}\right)\cdot2\frac{2}{17}}\)=75%
\(Q=\left(\frac{2}{5}-1,008\right):\frac{4}{7}:\left[\left(3\frac{1}{4}-6\frac{5}{9}\right)\cdot2\frac{2}{17}\right]\)
\(=-0.608:\frac{4}{7}:\left(-\frac{119}{36}.\frac{36}{17}\right)\)
\(=-\frac{133}{125}:\left(-7\right)=\frac{19}{125}\)
Bài 1: Tính
a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)
b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)
c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)
Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)
b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\)
c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)
d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)
e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)
Bài 3: Chứng minh rằng
a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)
b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)
Bài 4:
a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)
b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)
c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
Bỏ dấu ngoặc rồi tính :
a) \(\left(27+65\right)+\left(346-27-65\right)\)
b) \(\left(42-69+17\right)-\left(42+17\right)\)
a) (27+65)+(346-27-65)
= 27+65+346-27-65
= (27-27)+(65-65)+346
= 0 + 0 + 346
= 346
b) (42-69+17)-(42+17)
= 42-69+17 – 42 – 17
= (42-42)+(17-17)-69
= 0 + 0 – 69
= -69
a)(27+65)+(346-27-65)
=27+65+345-27-65
=(27-27)+(65-65)+346
=0+0+346
=346
b) (42-69+17)-(42+17)
=42-69+17-42-17
=(42-42)-69+(17-17)
=0-69+0
=-69
a)(27+65)+(346-27-65)
=27+65+346-27-65
=92+346-27-65
=438-27-65
=411-65
=346
b)(42-69+17)-(42+17)
=42-69+17-42+17
=-27+17-42+17
=-10-42+17
=-52+17
=-35