giai phuong trinh sau:
2(6-2a)2 + (6-a)a = 0
Giai phuong trinh sau:
2(6-2a)2 - (6-a)a = 0
Giai cac phuong trinh sau
a)x^2- 10=0
b)2x^2- 6=0
c)x^2- can bac 5=0
a)x2-10=0
<=>x2=10
<=>x=\(\sqrt{10}\)hoặc \(-\sqrt{10}\)
b)2x2-6=0
<=>2x2=6
<=>x=3
<=>x=\(\sqrt{3}\)hoặc\(-\sqrt{3}\)
c)câu này mk chưa hiểu đề cho lắm
cho phuong trinh ( a^2 - 2a -3)x + a^2 = 9. Giai phuong trinh theo tham so a
giai cac phuong trinh sau
a) x + 5 can x - 6 =0
b) x - can x + 1/4 = 0
a: \(x+5\sqrt{x}-6=0\)
\(\Leftrightarrow\sqrt{x}-1=0\)
hay x=1
b: \(x-\sqrt{x}+\dfrac{1}{4}=0\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{2}=0\)
hay \(x=\dfrac{1}{4}\)
giai cac phuong trinh sau
a) x + 5 can x - 6 =0
b) x - can x + 1/4 = 0
a: \(x+5\sqrt{x}-6=0\)
\(\Leftrightarrow\sqrt{x}-1=0\)
hay x=1
b: \(x-\sqrt{x}+\dfrac{1}{4}=0\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{2}=0\)
hay \(x=\dfrac{1}{4}\)
giai cac phuong trinh sau
a) x + 5 can x - 6 =0
b) x - can x + 1/4 = 0
a: \(x+5\sqrt{x}-6=0\)
\(\Leftrightarrow\sqrt{x}-1=0\)
hay x=1
b: \(x-\sqrt{x}+\dfrac{1}{4}=0\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{2}=0\)
hay \(x=\dfrac{1}{4}\)
giai phuong trinh va he phuong trinh sau:
x2 + 5x -6=0
b{4x+5y=3
{x-3y=5
giai mau giup toi nhe cac ban
giai phuong trinh sau
\(^{x^6-15x^2+\sqrt{68}=0}\)
Giai phuong trinh
a) (x+1)^4+(x-3)^4=0
b) x^4 + 2x^3 - 4x^2 -5x -6=0
a) Ta có: \(\left(x+1\right)^4+\left(x-3\right)^4=0\)
Nhận thấy: \(\hept{\begin{cases}\left(x+1\right)^4\ge0\left(\forall x\right)\\\left(x-3\right)^4\ge0\left(\forall x\right)\end{cases}\Rightarrow}\left(x+1\right)^4+\left(x-3\right)^4\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=3\end{cases}}\) (mâu thuẫn)
=> pt vô nghiệm
b) \(x^4+2x^3-4x^2-5x-6=0\)
\(\Leftrightarrow\left(x^4-2x^3\right)+\left(4x^3-8x^2\right)+\left(4x^2-8x\right)+\left(3x-6\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^3+3x^2\right)+\left(x^2+3x\right)+\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)
=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
a,\(\left(x+1\right)^4+\left(x-3\right)^4=0\)
\(x^4-1+x^4-81=0\)
\(2x^4-82=0\)
\(2x^4=82\)
\(x^4=41\)
\(x=\sqrt[4]{41}\)
\(\Rightarrow\)vô nghiệm