Tìm hai số nguyên sao cho : tích của tổng hai số với hiệu của chúng bằng 2018
Tìm hai số nguyên sao cho tổng của chúng và tích của chúng là hai số đối nhau
tìm hai số nguyên a và b biết tổng của chúng bằng 3 lần hiệu a chia b còn thương a chia b và hiệu ai trừ b là hai số đối nhau
1.Tìm hai số nguyên sao cho thương bằng hiệu của chúng.
2.Tìm hai số nguyên sao cho thương bằng tổng của chúng.
Tìm hai số nguyên a và b sao cho hiệu a-b bằng ba lần tổng của chúng, đồng thời tích của chúng bằng -18
Bài giải
Ta có: a - b = 3.(a + b) (a,b thuộc Z)
a.b = -18
Xét a - b = 3.(a + b) và a.b = -18
Giả sử a < b và a là một số âm với b là một số dương (tại vì a.b = -18 nên một trong a, b là một số âm, còn lại là số dương)
Thì lúc đó: a - b là một số âm (a < b) và 3.(a + b) sẽ là một số dương (3.(số âm + số dương) a < b thì số âm + số dương = số dương, 3 nhân số dương = số dương)
Mâu thuẫn với giả thiết trên
Suy ra a > b và a là một số dương, b là một số âm
Xét a - b = 3.(a + b)
=> a - b = 3.a + 3.b
=> 3.a + 3.b - (a - b) = 0
=> 3.a + 3.b - a - b = 0
3.a - a + (3.b + b) = 0
2.a + 4.b = 0
2a = 0 - 4.b
2a = -(4.b)
a = -(2.b)
Xét a.b = -18
=> -(2.b).b = -18
=> -(2.b.b) = -18
=> -(2.b2) = -18
=> 2.b2 = 18
=> b2 = 18 : 2
=> b2 = 9
=> b2 = (-3)2 (b là số âm mà)
=> b = -3
=> a.(-3) = -18
=> a = -18 : (-3)
=> a = 9
Vậy a = 9 và b = -3
À khoan, cho mình nói lại:
Đừng viết giả sử, bỏ cái đó đi
b2 = 9
=> b = -3 hoặc b = 3
Nếu b = -3 thì a = 9, nếu b = 3 thì a.3 = -18 => a = -18 : 3 = -9
Vậy b = -3 thì a = 9, b = 3 thì a = -9
tìm hai số nguyên sao cho tích của chúng bằng hiệu của chúng
Hai số đó là: 0 và 0
Vì 0x0=0 và 0-0=0
Chúc bn hok giỏi nha
gọi 2 số đó là a và b.
ta có a*b=a-b
suy ra ab-a+b=0
=>a(b-1)+(b-1)=-1
=>(a+1)(b-1)=-1
sau đó xét 2 trường hợp
TH1:a+1=1 =>a=0 và b-1=-1 suy ra b=0
TH2:a+1=-1 suy ra a=-2 và b-1=1 =>b=2
Tìm hai số nguyên sao cho hiệu của chúng bằng tích của chúng.
Gọi số lớn là a, số bé là b, ta có:
ab = a - b
ab + b = a
b(a+1) = a
b(a+1)+1=a+1
b(a+1)-(a+1)=0
(a+1)(b-1)=0
+) a+1=0 => a = -1
=> (-1)b= -1-b => b=0
+) b-1=0 => b=1
=> a=a-1 => loại
Từ đó suy ra a=0 và b=0
Bài 3: Tìm bốn số nguyên tố liên tiếp, sao cho tổng của chúng là số nguyên tố.
Bài 4: Tổng của hai số nguyên tố có thể bằng 2003 được không?
Bài 5: Tìm hai số nguyên tố, sao cho tổng và tích của chúng đều là số nguyên tố.
Bài 6: Tìm số nguyên tố có ba chữ số, biết rằng nếu viết số đó theo thứ tự ngược lại thì ta được một số là lập phương của một số tự nhiên.
Bài 7: Tìm số tự nhiên có bốn chữ số, chữ số hàng nghìn bằng chữ số hàng đơn vị, chữ số hàng trăm bằng chữ số hàng chục và số đó viết được dưới dạng tích của ba số nguyên tố liên tiếp.
Bài 8: Một số nguyên tố p chia cho 42 có số dư r là hợp số. Tìm số dư r.
Bài 9: Hai số nguyên tố sinh đôi là hai số nguyên tố hơn kém nhau 2 đơn vị. Tìm hai số nguyên tố sinh đôi nhỏ hơn 50.
Bài 10: Tìm số nguyên tố, biết rằng số đó bằng tổng của hai chữ số nguyên tốt và bằng hiệu của hai số nguyên tố.
mình cần gấp mong mọi người giúp mình
tìm hai số nguyên sao cho tổng của chúng bằng tích của chúng
Trả lời:
Gọi 2 số cần tìm là x và y, theo đề bài ta có:
x+y=xy
-> x(y-1) - (y-1) =1
-> (y-1).(x-1)=1
mà 1= 1.1 = (-1).(-1)
Ta có 2 trường hợp
a) 1=1.1 -> x=2, y=2
b) 1=(-1).(-1)
-> x=0, y=0
1. Hiệu của hai số là 4. Nếu tăng một số gấp 3 lần, giữ nguyên số kia thì hiệu của chúng bằng 60. Tìm hai số đó
2.Tìm hai số, biết rằng tổng của chúng gấp 5 lần hiệu của chúng, tích của chúng gấp 24 lần hiệu của chúng
1. Gọi hai số cần tìm là \(a,b\)trong đó \(a-b=4\).
TH1: Gấp \(a\)lên \(3\)lần.
\(\hept{\begin{cases}a-b=4\\3a-b=60\end{cases}}\Leftrightarrow\hept{\begin{cases}2a=56\\b=a-4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=28\\b=24\end{cases}}\).
TH2: Gấp \(b\)lên \(3\)lần.
\(\hept{\begin{cases}a-b=4\\a-3b=60\end{cases}}\Leftrightarrow\hept{\begin{cases}2b=-56\\a=b+4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-24\\b=-28\end{cases}}\)
2. Gọi hai số là \(a,b\).
Có: \(\hept{\begin{cases}a+b=5\left(a-b\right)\\ab=24\left(a-b\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}4a=6b\\ab=24\left(a-b\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{2}{3}a\\\frac{2}{3}a^2=24\left(a-\frac{2}{3}a\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=\frac{2}{3}a\\\frac{2}{3}a^2-16a=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=0,b=0\\a=24,b=16\end{cases}}\)
tìm hai số nguyên tố sao cho tổng của hai chúng là số nguyên tố hiệu của chúng cũng là số nguyên tố
2 và 5
vì 5-2=3(số nguyên tố)
5+2=7(số nguyên tố)
Tick đúng cho mình nha