Cho A= 2 + 2^2 + 2^3 + ........ + 2^10.CMR:
A chia hết cho 21
Helpppppppppppp!
Bài 1:CMR:11.a+2.b dấu mũi tên hai chiều 18.a+5.b chia hết cho 19
Bài 2:Cho số tự nhiên a không chia hết cho 2 và 3 .CMR:A=4.a2+3.a+5 chia hết cho 6
Bài 3:CMR:n2+n+2 không chia hết cho 5,với mọi n thuộc N
Bài 4:CMR:a3-5.a chia hết cho 6 với mọi a thuộc N ,lớn hơn 1
Bai 5:CMR:a+2.b chia het cho 3 khi và chỉ khi b+2.a chia hết cho 3
( Làm chi tiết vào nha !)
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
Cho A=21+22+23+.......+2100
a,Tính tổng A
b,CMR:A chia hết cho 30
c,CMR:A không chia hết cho 14
Lời giải:
a.
$A=2+2^2+2^3+...+2^{100}$
$2A=2^2+2^3+2^4+...+2^{101}$
$\Rightarrow 2A-A=2^{101}-2$
$\Rightarrow A=2^{101}-2$
b.
Hiển nhiên các số hạng của $A$ đều chẵn nên $A\vdots 2(1)$
Mặt khác:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{97}+2^{98}+2^{99}+2^{100})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{97}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{97})=15(2+2^5+...+2^{97})\vdots 15(2)$
Từ $(1); (2)$ mà $(2,15)=1$ nên $A\vdots (2.15)$ hay $A\vdots 30$
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{98}+2^{99}+2^{100})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{98}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+...+2^{98})$
$=2+7(2^2+2^5+...+2^{98})$
$\Rightarrow A$ không chia hết cho 7
$\Rightarrow A$ không chia hết cho 14.
Cho a và b là 2 số lẻ chia hết cho 3. CMR:a^2-b^2 chia hết cho 24
Câu 1:CMR:a)Với n thuộc N thì A=2.n+11...1 chia hết cho 3
b)Với a,b,n thuộc N thì B=(10^n-1).a+(11...1-n).b chia hết cho 9
Câu 2:CMR:a)Với n thuộc N thì 10^n+2 chia hết cho 3
b)88...8-9+n chia hết cho 9
giúp mình với!
cmr:a^2+b^2 chia hết cho 3 thìa và b chia hết cho 3
Vì số chính phương chia 3 dư 1 hoặc 0
Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là
(0;0) (0;1) (1;0) (1;1)
Vì a2+b2chia hết 3 nên ta nhận cặp (0;0) => a,b đều chia hết 3
cho A=1+2+2^2+2^3+...+2^2013+2^2014
a)tính A
b)CMR:A chia hết cho 31
A = 1 + 2 + 22 + .... + 22014
Ta có :
a ) 2A = 2 ( 1 + 2 + 22 + .... + 22014 )
= 2 + 22 + 24 + ... + 22015
2A - A = ( 2 + 22 + 24 + ... + 22015 ) - ( 1 + 2 + 22 + .... + 22014 )
A = 22015 - 1
b ) A = ( 1 + 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 + 29 ) + .... + ( 22010 + 22011 + 22012 + 22013 + 22014 )
= ( 1 + 2 + 22 + 23 + 24 ) + 25( 1 + 2 + 22 + 23 + 24 ) + .... + 22010( 1 + 2 + 22 + 23 + 24 )
= ( 1 + 2 + 4 + 8 + 16 ) + 25 ( 1 + 2 + 4 + 8 + 16 ) + ... + 22010( 1 + 2 + 4 + 8 + 16 )
= 31 + 25.31 + .... + 31.22010
= 31( 1 + 25 + .... + 22010 ) chia hết cho 31 ( đpcm )
CHO A = x^3 -x
a) CMR: A chia hết cho 2
b) CMR:A chia hết cho 3
a) Ta có : A = \(x^3-x\)
=> A = \(x^2.x-x\)
=> A = \(x\left(x^2-1\right)\)
Xét :
TH1 : \(x\) là số chẵn => \(x\)chia hết cho \(2\) => \(x\left(x^2-1\right)\)chia hết cho \(2\) ( thỏa mãn )
TH2 : \(x\)là số lẻ => \(x^2\)là số lẻ => \(x^2-1\)là số chẵn, chia hết cho 2 => \(x\left(x^2-1\right)\)chia hết cho \(2\)(thỏa mãn )
Qua 2 TH ta đều thấy \(x^3-x\)chia hết cho \(2\)
Vậy A chia hết cho 2.
Nhớ k nha Mai best friend !
Cho A = 3^1+3^2+3^3+.....3^2012
CMR:A chia hết cho 13
A = 31 + 32 + 33 + ....... + 32012
A = ( 31 + 32 + 33) + ( 34 + 35 + 36 ) + ....... + ( 32010 + 32011 + 32012)
A = 1 . ( 31 + 32 + 33) + 34 . ( 31 + 32 + 33) + ......... + 32010 . ( 31 + 32 + 33)
A = 1 . 39 + 34 . 39 + ........ + 32010 . 39
A = 39 . ( 1 + 34 + .......... + 32020 ) \(⋮\)13\(\rightarrowĐPCM\)
# HOK TỐT #
A = 31 + 32 + 33 +34 + 35 + 36 + . . . + 32010 + 32011 + 32012
A = ( 31 + 32 + 33 ) + ( 34 + 35 + 36 )+ . . . + ( 32010 + 32011 + 32012 )
A = 31 (1 + 3 + 32 ) + 34 (1 + 3 + 32 ) + . . . + 32010 (1 + 3 + 32 )
A = 31 . 13 + 34 . 13 + . . . + 32010 . 13
A = 13 .( 31 + 34 + . . . + 32010 ) \(⋮\)13 ( ĐPCM)
HOK TỐT
Cho A = 3^1+3^2+3^3+.....3^2012
CMR:A chia hết cho 13
A = 31 + 32 + 33 + ..... + 32012
A = ( 31 + 32 + 33) + ......... + ( 32010 + 32011 + 32012)
A = 1. ( 31 + 32 + 33) + ........ + 32010. ( 31 + 32 + 33)
A = 1 . 39 + ....... + 32010 . 39
A = 39 . ( 1 + ...... + 32010) \(⋮13\rightarrowĐPCM\)
# HOK TỐT #
Cho A = 3^1+3^2+3^3+.....3^2012
CMR:A chia hết cho 13
Ta có : 3+32+33+.......+32012
= ( 3+32+33 ) +.......+( 32010+32011+32012)
= 3 ( 1+3+9 ) +........+ 32010 ( 1+3+9)
= 3.13+......+32010.13
= 13 ( 3+......+ 32010)
Vậy biểu thức trên chia hết cho 13.
Bạn có thể làm thêm mất biểu thức ở hàng thứ hai để chi tiết hơn
A= 31+ 32+ 33+......+32012
A= ( 31+ 32+ 33) + (34+35+36),+......+ (32010+32011+ 32012)
A= 31(1+3+32)+ 34(1+3+32)+...............+32010(1+3+32)
A= 31.13+ 32.13+.....+32010.13
A= 13 ( 3+32+....+32010)
Vì 13 ( 3+32+....+32010) \(⋮\)13 nên A \(⋮\)13
Vậy....