Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoang Thi Thu Giang
Xem chi tiết
Hoang Thi Thu Giang
16 tháng 11 2016 lúc 19:29

Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.

Tuệ Nhân Mai
Xem chi tiết
Akai Haruma
6 tháng 7 2024 lúc 22:46

Lời giải:
a.

$A=2+2^2+2^3+...+2^{100}$

$2A=2^2+2^3+2^4+...+2^{101}$

$\Rightarrow 2A-A=2^{101}-2$

$\Rightarrow A=2^{101}-2$

b.

Hiển nhiên các số hạng của $A$ đều chẵn nên $A\vdots 2(1)$

Mặt khác:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{97}+2^{98}+2^{99}+2^{100})$

$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{97}(1+2+2^2+2^3)$

$=(1+2+2^2+2^3)(2+2^5+...+2^{97})=15(2+2^5+...+2^{97})\vdots 15(2)$

Từ $(1); (2)$ mà $(2,15)=1$ nên $A\vdots (2.15)$ hay $A\vdots 30$

Akai Haruma
6 tháng 7 2024 lúc 22:47

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{98}+2^{99}+2^{100})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{98}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+...+2^{98})$

$=2+7(2^2+2^5+...+2^{98})$

$\Rightarrow A$ không chia hết cho 7

$\Rightarrow A$ không chia hết cho 14.

thành piccolo
Xem chi tiết
dragon
Xem chi tiết
Luong Hoang Long
Xem chi tiết
Die Devil
17 tháng 4 2017 lúc 7:49

Vì số chính phương chia 3 dư 1 hoặc 0

Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là

(0;0) (0;1) (1;0) (1;1)

Vì a2+b2chia hết 3 nên ta nhận cặp (0;0) => a,b đều chia hết 3

Hồ Kim Phú
Xem chi tiết
Đinh Đức Hùng
27 tháng 1 2017 lúc 16:11

A =  1 + 2 + 22 + .... + 22014 

Ta có :

a ) 2A = 2 ( 1 + 2 + 22 + .... + 22014 )

= 2 + 22 + 24 + ... + 22015

2A - A = ( 2 + 22 + 24 + ... + 22015 ) - ( 1 + 2 + 22 + .... + 22014 )

A = 22015 - 1

b ) A = ( 1 + 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 + 29 ) + .... + ( 22010 + 22011 + 22012 + 22013 + 22014 )

= ( 1 + 2 + 22 + 23 + 24 ) + 25( 1 + 2 + 22 + 23 + 24 ) + .... + 22010( 1 + 2 + 22 + 23 + 24 )

= ( 1 + 2 + 4 + 8 + 16 ) + 25 ( 1 + 2 + 4 + 8 + 16 ) + ... + 22010( 1 + 2 + 4 + 8 + 16 )

= 31 + 25.31 + .... + 31.22010

= 31( 1 + 25 + .... + 22010 ) chia hết cho 31 ( đpcm )

phạm ngọc mai
Xem chi tiết
Trần Thị Diệu Vi
18 tháng 11 2017 lúc 13:46

a) Ta có : A = \(x^3-x\)

          => A = \(x^2.x-x\)

          => A = \(x\left(x^2-1\right)\) 

Xét :

TH1 : \(x\) là số chẵn => \(x\)chia hết cho \(2\) => \(x\left(x^2-1\right)\)chia hết cho \(2\) ( thỏa mãn )

TH2 : \(x\)là số lẻ => \(x^2\)là số lẻ  =>  \(x^2-1\)là số chẵn, chia hết cho 2 => \(x\left(x^2-1\right)\)chia hết cho \(2\)(thỏa mãn )

Qua 2 TH ta đều thấy \(x^3-x\)chia hết cho \(2\)

Vậy A chia hết cho 2.

Nhớ k nha Mai best friend !

DŨNG 2K8
Xem chi tiết
Emma
10 tháng 3 2020 lúc 17:27

A = 31 + 32 + 33 + ....... + 32012

A = ( 31 + 32 + 33) + ( 34 + 35 + 36 ) + ....... + ( 32010 + 32011 + 32012)

A = 1 . ( 31 + 32 + 33) + 34 . ( 31 + 32 + 33) + ......... + 32010 .  ( 31 + 32 + 33)

A = 1 . 39 + 34 . 39 + ........ + 32010 . 39

A = 39 . ( 1 + 34 + .......... + 32020 \(⋮\)13\(\rightarrowĐPCM\)

# HOK TỐT #

Khách vãng lai đã xóa

A = 31 + 32 + 33 +34 + 35 + 36 + . . . + 32010 + 32011 + 32012

A = ( 31 + 32 + 33 ) + ( 34 + 35 + 36 )+ . . . + ( 32010 + 32011 + 32012 )

A = 31 (1 + 3 + 32 ) + 34  (1 + 3 + 32 ) + . . . + 32010  (1 + 3 + 32 )

A = 31 . 13 + 34 . 13 + . . . + 32010 . 13

A = 13 .( 31 + 34 + . . . + 32010 ) \(⋮\)13 ( ĐPCM)

HOK TỐT

Khách vãng lai đã xóa
WANNAONE 123
Xem chi tiết
Emma
10 tháng 3 2020 lúc 17:38

A = 31 + 32 + 33 + ..... + 32012

A = ( 31 + 32 + 33)  + ......... + ( 32010 + 32011 + 32012)

A = 1. ( 31 + 32 + 33) + ........ + 32010. ( 31 + 32 + 33

A = 1 . 39 + ....... + 32010 . 39

A = 39 . ( 1 + ...... + 32010\(⋮13\rightarrowĐPCM\)

# HOK TỐT #

Khách vãng lai đã xóa
WANNAONE 123
Xem chi tiết
hoangthiminhngoc
11 tháng 3 2020 lúc 15:53

Ta có : 3+32+33+.......+32012 

 ( 3+32+33 ) +.......+( 32010+32011+32012

= 3 ( 1+3+9 ) +........+ 32010 ( 1+3+9)

= 3.13+......+32010.13

= 13 ( 3+......+ 32010) 

Vậy biểu thức trên chia hết cho 13. 

Bạn có thể làm thêm mất biểu thức ở hàng thứ hai để chi tiết hơn

Khách vãng lai đã xóa
Diệu Anh
11 tháng 3 2020 lúc 15:53

A= 31+ 32+ 33+......+32012

A= (  31+ 32+ 33) + (34+35+36),+......+ (32010+32011+ 32012)

A= 31(1+3+32)+ 34(1+3+32)+...............+32010(1+3+32)

A= 31.13+ 32.13+.....+32010.13

A= 13 ( 3+32+....+32010)

Vì 13 ( 3+32+....+32010\(⋮\)13 nên A \(⋮\)13

Vậy....

Khách vãng lai đã xóa