Tìm gt nhỏ nhất của biểu thức
D=x^2+y^2-4(x+y)+16
Tìm giá trị nhỏ nhất của biểu thức: D=x^2+y^2-4(x+y)+16
\(D=x^2+y^2-4x-4y+16\)
\(D=\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8\)
\(D=\left(x-2\right)^2+\left(y-2\right)^2\ge8\)
\("="\Leftrightarrow x=y=2\)
1>Tìm giá trị nhỏ nhất của biểu thức:A=x^2+2x+3
2>Chứng minh rằng hiệu của hai số nguyên liên tiếp là số lẻ
3>Chứng minh rằng:(x-y)^2-(x+y)^2=-4xy
4>Tìm giá trị lớn nhất của biểu thức:Q=-x^2+6x+1
giải nhanh đi nhé mik cần gấp ai lm đủ đúng hết mik k mun cho nha giải đủ các bước nhé cảm ưn các bạn trước giúp mik nha^.^><hihiii
1) \(A=x^2+2x+3=\left(x+1\right)^2+2 \)
vi \(\left(x+1\right)^2\ge0\)(voi moi x)
\(\Rightarrow\left(x+1\right)^2+2\ge2\)(voi moi x)
Vay GTNN cua A =2 khi x=-1
2) Goi 2 so nguyen lien tiep do la x va x+1
TDTC x+1-x=1
Vi 1 la so le nen x+1-x la so le
Vay .......
3) \(\left(x-y\right)^2-\left(x+y\right)^2=\left(x-y-x-y\right)\left(x-y+x+y\right)\)
\(=-2y\cdot2x=-4xy\)(dpcm)
4) \(Q=-x^2+6x+1=-\left(x^2-6x-1\right)=-\left(x^2-6x+9-10\right)=-\left(x-3\right)^2+10\)
Vi \(\left(x-3\right)^2\ge0\)(voi moi x)
\(\Rightarrow-\left(x-3\right)^2\le0\)(voi moi x)
\(\Rightarrow-\left(x-3\right)^2+10\le10\)(voi moi x)
Vay GTLN cua Q=10 khi x=3
cho x,y>=0;x+y=16 tìm giá trị nhỏ nhất của biểu thức:
M=\(\frac{9}{xy}\)+\(\frac{17}{x^2+y^2}\)
ta đi chứng minh \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)(tự chứng minh nhé, nhân chéo lên xong phân tích ra nó sẽ ra (a-b)^2/ab lớn hơn bằng 0)
\(M=\frac{18}{2xy}+\frac{17}{x^2+y^2}\ge\frac{17.4}{\left(x+y\right)^2}+\frac{1}{2xy}\)
Chứng minh được \(2xy\le\frac{\left(x+y\right)^2}{2}\forall x,y>0\)
\(\Rightarrow M\ge\frac{68}{16^2}+\frac{2}{\left(x+y\right)^2}=\frac{17}{64}+\frac{2}{16^2}=\frac{35}{128}\)
Đẳng thức xảy ra <=> x=y=8
Tìm giá trị nhỏ nhất của biểu thức:x^2+y^2-4(x+y)+16
\(x^2+y^2-4\left(x+y\right)+16\)
\(=x^2+y^2-4x-4y+16\)
\(=x^2-2\cdot x\cdot2+2^2+y^2-2\cdot y\cdot2+2^2+8\)
\(=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=2\end{cases}}\)
Vậy GTNN của biểu thức là 8 <=> x = y = 2
tìm giá trị nhỏ nhất của biểu thức
A= 5x + 3y + 12/x + 16/y (với x,y>0 và x+y>=6)
P=5x+3y+12/x+16/y
=3x+12/x+y+16/y+2(x+y)
áp dụng cosi: 3x+12/x>=2√(3.12)=12
y+16/y>=8
lại có 2(x+y)>=2.6=12
nên
P>=12+8+12=32
dấu = khi 3x=12/x và y=16/y và x+y=6
==> x=2; y=4
giá trị nhỏ nhất P=32 khi x=2; y=4
Ta có: \(x+y\ge6\Rightarrow x\ge6-y\)
Vậy GTNN của x là 6 - y.
Thay 6 - y vào biểu thức đã rút gọn có:
\(A=-2y^3+42y^2-176y-96\)
Giả sử y = 0, ,=> P = -232
Do y > 0 nên P > -232
Vậy: \(Min_P=-232\)
Ta có : \(x+y\ge6\Rightarrow x\ge6-y\\ \)
Vậy GTNN của x là 6-y
Thay \(6-y\) vào biểu thức đã rút gọn có :
\(A=-2y^3+42y^2-176y-96\\ \)
Giả sử \(y=0\Rightarrow P=-232\)
Do \(y>0\) nên \(P>-232\)
Vậy Min \(P=-232\)
Cho x > 0, y > 0 và xy=4. Tìm giá trị nhỏ nhất của biểu thức \(Q=\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}\)
\(Q=\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}=\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)
\(=\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)
\(=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(Q=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}=\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}=1\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y>0\\x=y\\xy=4\end{cases}}\Rightarrow x=y=2\)
Vậy GTNN của Q là 1 <=> x = y = 2
Or
\(Q-1=\frac{\left(x^2-y^2\right)^2+2\left(x+y\right)\left(x^2+y^2-8\right)}{4\left(x+2\right)\left(y+2\right)}\ge0\)*đúng do \(x^2+y^2\ge2xy=8\)*
Do đó \(Q\ge1\)
Đẳng thức xảy ra khi x = y = 2
Cho x,y là hai số thực thỏa mãn x+y>=2. Tìm giá trị nhỏ nhất của biểu thức \(P=3(x^4+x^4+x^2y^2)-2(x^2+y^2)+1\)
P=(6x-5y-16)^2+x^2+y^2+2xy+x+y+2.Tìm giá trị nhỏ nhất của biểu thức
Cho x>1, y>1. Tìm giá trị nhỏ nhất của biểu thức
P=x^2/y-1+y^2/x-1