Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vu Dang Toan
Xem chi tiết
nguyenthingoc
3 tháng 11 2016 lúc 21:30

1999.00075

alibaba nguyễn
3 tháng 11 2016 lúc 21:43

Đặt 2000 = a thì ta có

A = \(\sqrt{1+\left(a-1\right)^2+\frac{\left(a-1\right)^2}{a^2}}+\frac{a-1}{a}\)

\(=\sqrt{\frac{a^4-2a^3+3a^2-2a+1}{a^2}}+\frac{a-1}{a}\)

\(=\frac{a^2-a+1}{a}+\frac{a-1}{a}=a=2000\)

Vu Dang Toan
3 tháng 11 2016 lúc 21:45

Cảm ơn bạn rất nhiều . 

Dương Phạm Tùng
Xem chi tiết
nguyễn văn thái
Xem chi tiết
Ngu Người
11 tháng 10 2015 lúc 21:16

\(\frac{1}{n\sqrt{n+1}+\sqrt{n}\left(n+1\right)}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)

sau đó tách ra là ok

La Huỳnh Mai Thảo
Xem chi tiết
Đào Trọng Luân
23 tháng 5 2017 lúc 19:20

\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+...+\frac{1}{2000}+2000}{1+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}}\)

\(=\frac{\left[\frac{2001}{1}+1\right]+\left[\frac{2001}{2}+1\right]+...+\left[\frac{2001}{2000}+1\right]+2001}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}\)

\(=\frac{2001\left[1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}\right]}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}=2001\)

Đào Trọng Luân
23 tháng 5 2017 lúc 19:10

$\ge $ 

 TNT TNT Học Giỏi
23 tháng 5 2017 lúc 19:15

là sao?

cho mình hỏi và đề đâu

Đặng Anh Quế
Xem chi tiết
trần việt hoàng
24 tháng 10 2017 lúc 19:28

ed aakrta9 rf, j,ear ,eru8refj eru jrae ear9ffnxvn 

Lê Thành Đạt
Xem chi tiết
Trần Thị Phương Nhi
Xem chi tiết
Thánh Ca
27 tháng 8 2017 lúc 15:56

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

Aphrodite
Xem chi tiết
Nguyễn Thị Thu Huyền
8 tháng 3 2017 lúc 14:40

TẦM NHƯ HƠI CĂNG

Đinh Đức Hùng
8 tháng 3 2017 lúc 14:49

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+....+\frac{1}{1999}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+....+\left(\frac{1}{1999}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{2000}{2}+\frac{2000}{3}+\frac{2000}{4}+....+\frac{2000}{2000}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}\)

\(=\frac{1}{2000}\)

Minh Triều
Xem chi tiết
Đỗ Ngọc Hải
5 tháng 6 2015 lúc 9:49

\(\Leftrightarrow\frac{x-1}{2000}-1+\frac{x-2}{1999}-1+\frac{x-3}{1998}-1+....+\frac{x-1999}{2}-1=0\)

\(\Leftrightarrow\frac{x-2001}{2000}+\frac{x-2001}{1999}+\frac{x-2001}{1998}+....+\frac{x-2001}{2}=0\)

\(\Leftrightarrow\left(x-2001\right)\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+...+\frac{1}{2}\right)=0\)

\(\Leftrightarrow x-2001=0\)

\(\Leftrightarrow x=2001\)