Tìm x :
a) ( x + 3 )^2 + ( x - 2 )^2 = 2x^2
b) 7x( x - 2 ) = x - 2
c) 8x^3 - 12x^2 + 6x - 1 = 0
Tìm x biết
a)(x+3)^2(x-2)^2=2x b)7x(x-2)=(x-2) c)8x^3-12x^2+6x-1=0
d)4x^2-9-x(2x-3)=0 e)x^3+5x^2+9x=-45 f)x^3-6x^2-x+30=0
d) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow4x^2-9-2x^2+3x=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)
e) \(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+5x^2+9x+45=0\)
\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)
f) \(x^3-6x^2-x+30=0\)
\(\Leftrightarrow\left(x^3-x^2-6x\right)-\left(5x^2-5x-30\right)=0\)
\(\Leftrightarrow x\left(x^2-x-6\right)-5\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-2x+3x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[x\left(x-2\right)+3\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{5;-3;2\right\}\)
a)(x+3)2(x-2)2=2x
b)7x(x-2)=(x-2)
c)8x3-12x2+6x-1=0
d)4x2-9-x(2x-3)=0
tìm x biết
(x+3)^2-(x-2)^2=2x
b> 7x(x-2)=(x-2)
c> 8x^3-12x^2+6x-1=0
d>4x^2-9-x(2x-3)=0
e>x^3+5x^2+9x=-45
f>x^3-6x^2-x+30=0
g> x^2+16=10x
Tìm x:
a,(x + 3)^2-(x-2)^2=2x
b,7x(x-2)=(x-2)
c,8x^3- 12x^2+6x-1=0
d,4x^2-5-x(2x-3)=0
e,x^3+5x^2+9x=-45
f,x^3-6x^2-x+30=0
g,x^2+16=10x
Mọi người giúp mình đi mà,mai mình phải nộp rồi,cảm ơn trước!!!!!!!!!!!!!!!!!!
a) (x + 3)2 - (x - 2)2 = 2x
=> (x + 3 - x + 2)(x + 3 + x - 2) = 2x
=> 5(2x + 1) = 2x
=> 10x + 5 = 2x
=> 10x - 2x = -5
=> 8x = -5
=> x = -5/8
b) 7x(x - 2) = x - 2
=> 7x(x - 2) - (x - 2) = 0
=> (7x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}7x-1=0\\x-2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{7}\\x=2\end{cases}}\)
c) 8x3 - 12x2 + 6x - 1 = 0
=> (2x - 1)3 = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
Tìm giá trị lớn nhất A=x(4-x)
Rút gọn rồi tính
A=(7x+5)2+(3x-5)2-(10x-6x)(5+7x)
Tại x=-2
B=(2x+y)(y2+4x^2-2xy)-8x(x-1)(x+1)
Tại x=-2 y=3
Bài 2:
a) Ta có: \(A=\left(7x+5\right)^2+\left(3x-5\right)^2-\left(10-6x\right)\left(5+7x\right)\)
\(=\left(7x+5\right)^2+2\cdot\left(7x+5\right)\cdot\left(3x-5\right)+\left(3x-5\right)^2\)
\(=\left(7x+5+3x-5\right)^2\)
\(=\left(10x\right)^2=100x^2\)
Thay x=-2 vào A, ta được:
\(A=100\cdot\left(-2\right)^2=100\cdot4=400\)
b) Ta có: \(B=\left(2x+y\right)\left(y^2-2xy+4x^2\right)-8x\left(x-1\right)\left(x+1\right)\)
\(=8x^3+y^3-8x\left(x^2-1\right)\)
\(=8x^3+y^3-8x^3+8x\)
\(=8x+y^3\)
Thay x=-2 và y=3 vào B, ta được:
\(B=-2\cdot8+3^3=-16+27=11\)
Bài 1:
Ta có: \(A=x\left(4-x\right)\)
\(=4x-x^2\)
\(=-\left(x^2-4x\right)\)
\(=-\left(x^2-4x+4\right)+4\)
\(=-\left(x-2\right)^2+4\le4\forall x\)
Dấu '=' xảy ra khi x=2
Vậy: \(A_{max}=4\) khi x=2
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
Biết \(x^2-2x-1=0\). Tính biểu thức \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
Ta có : \(x^2-2x-1=0
\)
\(\Leftrightarrow \)\((x-1)^2=2\)
\(\Leftrightarrow
\)\(\left[\begin{array}{}
x-1=\sqrt{2}\\
x-1=-\sqrt{2}
\end{array} \right.\)
Đặt P = \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
=\(\dfrac{(x^6-2x^5-x^4)-(4x^5-8x^4-4x^3)+(5x^4-10x^3-5x^2)-(2x^3-4x^2-2x)+(x^2-2x-1)+2016}
{(x^6-2x^5-x^4)+(2x^5-4x^4-2x^3)+(5x^4-10x^3-5x^2)+(4x^3-8x^2-4x)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{x^4(x^2-2x-1)-4x^3(x^2-2x-1)+5x^2(x^2-2x-1)-2x(x^2-2x-1)+(x^2-2x-1)+2016}
{x^4(x^2-2x-1)+2x^3(x^2-2x-1)+5x^2(x^2-2x-1)+4x(x^2-2x-1)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{2016}{12x + 2016}\)
=\(\dfrac{2016}{12(x+1)+2004}\)
=\(\dfrac{168}{x+1+167}\)
=\(\left[\begin{array}{}
\dfrac{168}{\sqrt{2}+167}\\
\dfrac{168}{-\sqrt{2}+167}
\end{array} \right.\)
Chú thích: Hình như mẫu là \(-6x\) chứ không phải \(6x
\) bạn ạ. Hay là mình phân tích sai thì cho mình xin lỗi nhé.
Tìm x:
a. 2x ( x - 2) - x + 2 = 0
b. 1 - 8x3 = 6x - 12x2
a, 2x(x-2)-x+2=0
<=>2x(x-2)-(x-2)=0
<=>(x-2)(2x-1)=0
=>x-2=0
hoặc 2x-1=0
=>x=2
hoặc x=1/2
b, 1-8x3=6x-12x2
<=>1-8x3-6x+12x2=0
<=>[13-(2x)3 ] -6x(1-2x)=0
<=>(1-2x)[1+2x+(2x)2 ]-6x(1-2x)=0
<=>(1-2x)[1+2x+(2x)2-6x]=0
<=>(1-2x)[12-2.1.2x+(2x)2 ]=0
<=>(1-2x)(1-2x)2=0
<=>(1-2x)3=0
=>1-2x=0
=>2x=1
=>x=1/2
Chúc bn học giỏi nhoa!!!
a)<=>2x(x-2)-(x-2)=0
<=>(2x-1)(x-2)=0
+) 2x-1=0
=>x=1/2
+)x-2=0
=>x=2
Vậy x=1/2 hoặc x=2
b) <=>1- (2x)3=6x(1-2x)
<=>(1-2x)(1+2x+4x2)=6x(1-2x)
<=>(1-2x)(1+2x+4x2)-6x(1-2x)=0
<=>(1-2x)(1+2x+4x2-6x)=0
<=>(1-2x)(1-4x+4x2)=0
<=>(1-2x)(1-2x)2=0
<=>(1-2x)3=0
<=> 1-2x=0
<=>x=1/2
bài 1 phân tích đa thức sau thành nhân tử
a)x4+4
b)x(x+1)(x+2)(x+3)+1
bài 2 tìm x
a)(x+3)2(x-2)2=2x
b)7x(x-2)=(x-2)
c)8x3-12x2+6x-1=0
d)4x2-9-x(2x-3)=0
e)x3+5x2+9x=-45
f) x3-6x2-x+30=0
x2+16=10x