Tính nhanh:
\(\left(3^{32}\cdot56-3^{32}\cdot28\right):3^{34}\)
Tính nhanh:\(\left(32^2-1^2\right)+\left(34^2-3^2\right)+\left(36^2-5^2\right)+...+\left(56^2-25^2\right)+\left(58^2-27^2\right)+\left(60^2-29^2\right)\)
Bạn dựa vào công thức
a2 - n2 = (a + n)(a - n)
Tính:
\(a.\left(3^{35}+3^{34}-3^{33}\right)\div3^{32}\)
\(b.5^3\times37+5^3\times64-5^7\div5^4\)
Nhanh tay lên đc tick nha
a) \(\left(3^{35}+3^{34}-3^{33}\right):3^{32}\)
\(=\frac{3^{35}}{3^{32}}+\frac{3^{34}}{3^{32}}-\frac{3^{33}}{3^{32}}\)
\(=3^3+3^2-3\)
\(=27+9-3\)
\(=33\)
b) \(5^3.37+5^3.64-5^7:5^4\)
\(=5^3.37+5^3.64-5^3\)
\(=5^3\left(37+64-1\right)\)
\(=5^3.100\)
\(=125.100\)
\(=12500\)
\(\left(3^{35}+3^{34}-3^{33}\right)\div3^{32}=3^{33}\left(3^2+3-1\right)\div3^{32}\)
\(=3^{33}.11\div3^{32}=11\left(3^{33-32}\right)=11.3=33\)
Ê Despacito, tai sao ở chỗ:
= 53 x 37 + 53 x 64 - 53
= 53 x ( 37 + 64 - 1)
Tại sao 53 lai = 1
Tính nhanh: \(2-\left\{3+5-\left[-12+5-\left(-3+7\right)-12\right]+32\right\}\)
2−3+5−[−12+5−(−3+7)−12]+322−3+5−[−12+5−(−3+7)−12]+32
=2−8−[−7−4−12]+32=2−8−[−7−4−12]+32
=2−8+23+32=2−8+23+32
=2−63=2−63
=−61
Tính nhanh \(4\cdot\left(3^2+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\left(3^{64}+1\right)\)
BT2: Tính nhanh
7)\(\dfrac{-19}{34}\left(\dfrac{17}{19}+\dfrac{49}{18}\right)+\dfrac{49}{18}\left(\dfrac{19}{34}-\dfrac{18}{7}\right)\)
8)\(\dfrac{29}{32}\left(\dfrac{41}{36}-\dfrac{32}{58}\right)-\dfrac{41}{36}\left(\dfrac{29}{32}+\dfrac{18}{41}\right)\)
7)\(\dfrac{-19}{34}\left(\dfrac{17}{19}+\dfrac{49}{18}\right)+\dfrac{49}{18}\left(\dfrac{19}{34}-\dfrac{18}{7}\right)\)
=\(\dfrac{-19}{34}.\dfrac{17}{19}+\dfrac{49}{18}.\dfrac{-19}{34}+\dfrac{49}{18}.\dfrac{19}{34}-\dfrac{18}{7}.\dfrac{49}{18}\)
=\(\dfrac{1}{2}+\left(\dfrac{49}{18}.\dfrac{-19}{34}+\dfrac{49}{18}.\dfrac{19}{34}\right)-7\)
=\(\dfrac{1}{2}+\left[\dfrac{49}{18}\left(\dfrac{-19}{34}+\dfrac{19}{34}\right)\right]-7\)
=\(\dfrac{1}{2}+0-7=\dfrac{-13}{2}\)
8)\(\dfrac{29}{32}\left(\dfrac{41}{36}-\dfrac{32}{58}\right)-\dfrac{41}{36}\left(\dfrac{29}{32}+\dfrac{18}{41}\right)\)
=\(\dfrac{29}{32}.\dfrac{41}{36}-\dfrac{29}{32}.\dfrac{32}{58}-\dfrac{41}{36}.\dfrac{29}{32}+\dfrac{18}{41}.\dfrac{41}{36}\)
=\(\left(\dfrac{29}{32}.\dfrac{41}{36}-\dfrac{41}{36}\dfrac{29}{32}\right)-\dfrac{29}{32}.\dfrac{32}{58}+\dfrac{18}{41}.\dfrac{41}{36}\)
=\(0-\dfrac{1}{2}+\dfrac{1}{2}=0\)
Tính
\([\left(\frac{2}{193}-\frac{3}{386}\right).\frac{193}{17}+\frac{32}{34}]:[\left(\frac{7}{2001}+\frac{11}{4002}\right).\frac{2001}{25}+\frac{9}{2}]\)
Ta có : [ ( 2/193 - 3/386 ) * 193/17 + 32/34 ] : [ ( 7/2001 + 11/4002 ) * 2001/25 + 9/2 ] .
=> [ 2/193 * 193/17 - 3/386 * 193/17 + 32/34 ] : [ 7/2001 * 2001/25 + 11/4002 * 2001/25 + 9/2 ] .
=> [ 2/17 - 3/34 + 32/34 ] : [ 7/25 + 11/50 + 9/2 ] .
=> [ 4/34 - 3/34 + 32/34 ] : [ 14/50 + 11/50 + 225/50 ] .
=> 33/34 : 5 .
=> 33/34 * 1/5 .
=> 33/170 .
Tính bằng cách thuận tiện nhất:
\(=\left[\left(\frac{2}{193}\cdot\frac{193}{17}\right)-\left(\frac{3}{386}\cdot\frac{193}{17}\right)+\frac{32}{34}\right]:\left[\left(\frac{7}{2001}\cdot\frac{2001}{25}\right)+\left(\frac{11}{4002}\cdot\frac{2001}{25}\right)+\frac{9}{2}\right]\)
\(=\left[\left(\frac{2}{17}-\frac{3}{17}\right)+\frac{32}{34}\right]:\left[\left(\frac{7}{25}+\frac{11}{50}\right)+\frac{9}{2}\right]\)
\(=\left(-\frac{1}{17}+\frac{32}{34}\right):\left(\frac{1}{2}+\frac{9}{2}\right)\)
\(=\frac{15}{17}+5\)
\(=\frac{100}{17}\)
~ học tốt ~
TÍnh nhanh:
\(\frac{11.3^{32}.3^8-9^{15}.3}{\left(2.3^{15}\right)^2}\)
\(\frac{11\cdot3^{32}\cdot3^8-9^{15}\cdot3}{\left(2\cdot3^{15}\right)^2}\)
\(=\frac{11\cdot3^{40}-3^{30}\cdot3}{2^2\cdot3^{30}}\)
\(=\frac{11\cdot3^{40}-3^{31}}{2^2\cdot3^{30}}\)
\(=\frac{3^{31}\cdot\left(11\cdot3^{19}-1\right)}{2^2\cdot3^{30}}\)
\(=\frac{3\cdot\left(11\cdot3^{19}-1\right)}{2^2}\)
ai tính nhanh được tiếp thì giải ra mik xem vs
Tính nhanh
1, \(10\frac{5}{4}-4\frac{9}{14}-6\frac{5}{7}+\frac{7}{3}\)
2, \(\frac{29}{32}\left(\frac{41}{36}-\frac{32}{58}\right)-\frac{41}{36}\left(\frac{29}{32}+\frac{18}{41}\right)\)
tính \(a=1+\frac{1}{2}\cdot\left(1+2\right)+\frac{1}{3}\cdot\left(1+2+3\right)+\cdot\cdot\cdot+\frac{1}{32}\cdot\left(1+2+3+\cdot\cdot\cdot+32\right)\)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{32}\left(1+2+3+...+32\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+....+\frac{1}{32}.\frac{32.\left(32+1\right)}{2}\)
\(=1+\frac{2+1}{2}+\frac{3+1}{2}+....+\frac{32+1}{2}\)
\(=1+\frac{3}{2}+\frac{4}{2}+....+\frac{33}{2}\)
\(\frac{2+3+4+....+33}{2}\)
\(=\frac{\frac{33\left(33+1\right)}{2}-1}{2}=280\)