Tìm gía trị nhỏ nhất của biểu thức:
\(C=3\text{|}x-2\text{|}+\text{|}3x+1\text{|}\)
1) Tìm giá trị nhỏ nhất của biểu thức, biết:
A=\(\text{(6x−2)}^2\)+10
B=\(\text{(3x+12)}^2\)−100
b)
Vì (3x+12)^2 luôn > hoặc = 0 với mọi x
=> (3x+12)^2-100> hoặc =0 -100
Vậy GTNN của B =-100
Dấu "=" xảy ra khi 3x+12=0
3x=-12
x=-4
Tìm giá trị nhỏ nhất của biểu thức:
\(D=\text{|}x+3\text{|}+5\text{|}6x+1\text{|}+\text{|}x-1\text{|}+3\)
Cần cm : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\Leftrightarrow a^2+2\left|ab\right|+b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng; dấu "=" xảy ra \(\Leftrightarrow ab\ge0\))
Áp dụng ta có :
\(A=\left|x+3\right|+5\left|6x+1\right|+\left|x-1\right|+3=\left(\left|x+3\right|+\left|1-x\right|\right)+5\left|6x+1\right|+3\)
\(\ge\left|x+3+1-x\right|+5\left|6x+1\right|+3=5\left|6x+1\right|+7\ge7\) có GTNN là 7
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(1-x\right)\ge0\\\left|6x+1\right|=0\end{cases}\Rightarrow x=-\frac{1}{6}\left(TM\right)}\)
vẬY \(D_{min}=7\) khi \(x=-\frac{1}{6}\)
Tìm giá trị nhỏ nhất của biểu thức
\(C=\text{|}x+5\text{|}+2-x\)
cho x,y,z thỏa man: xy+yz+zx=3. Tìm giá trị nhỏ nhất của biểu thức
P=\(\sqrt{2\text{x}^2+\text{x}y+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+z\text{x}+2\text{x}^2}\)
Ta có : \(P=\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2x^2}\)
Xét : \(\sqrt{2x^2+xy+2y^2}=\sqrt{\dfrac{3}{4}.\left(x-y\right)^2+\dfrac{5}{4}.\left(x+y\right)^2}\)
\(\ge\sqrt{\dfrac{5}{4}.\left(x+y\right)^2}=\dfrac{\sqrt{5}}{2}.\left(x+y\right)\)
\(CMTT:\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}.\left(y+z\right)\)
\(\sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}.\left(x+z\right)\)
Do đó : \(P\ge\dfrac{\sqrt{5}}{2}.\left(x+y+y+z+z+x\right)=\dfrac{2\sqrt{5}.\left(x+y+z\right)}{2}\)
\(\Rightarrow P\ge\sqrt{5}.\left(x+y+z\right)\)
Ta có : BĐT : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
Mà : \(xy+yz+zx=3\)
\(\Rightarrow\left(x+y+z\right)^2\ge9\)
\(\Leftrightarrow x+y+z\ge3\)
\(\Rightarrow P_{min}=3\sqrt{5}\)
Dấu bằng xảy ra : \(\Leftrightarrow x=y=z=1\)
Tìm giá trị lớn nhất của biểu thức:
\(C=\frac{3\text{|}x\text{|}+2}{4\text{|}x\text{|}-5}\)
Tìm giá trị lớn nhất của biểu thức
\(C=\frac{3\text{|}x\text{|}+2}{4\text{|}x\text{|}-5}\)
bài 1: tìm giá trị nguyên của x để các biểu thức sau lá số nguyên
a, M = \(\dfrac{2\text{x}^3-6\text{x}^2+x-8}{x-3}\)
b, N = \(\dfrac{3x^2-x+3}{3x+2}\)
c, P= \(\dfrac{x^4+16}{x^4-4\text{x}^3+8\text{x}^2-16\text{x}+16}\)
Bài 2 :Tìm giá trị nhỏ nhất
A= \(\dfrac{2\text{x}^2-16\text{x}+43}{x^2-8\text{x}+22}\)
Câu 1:
a: Để M là số nguyên thì \(2x^3-6x^2+x-3-5⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{4;2;8;-2\right\}\)
b: Để N là số nguyên thì \(3x^2+2x-3x-2+5⋮3x+2\)
\(\Leftrightarrow3x+2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-\dfrac{1}{3};-1;1;-\dfrac{7}{3}\right\}\)