x +(x + 1) +(x +2) +(x+3)+....+( x +2013) =2035147
x + ( X+1) + (X+2) + ..... + (X + 2013) = 2035147
\(x+\left(x+1\right)+...+\left(x+2013\right)=2035147\)
\(\Leftrightarrow2014x+2027091=2035147\)
\(\Leftrightarrow2014x=8056\)
hay x=4
x+(x+1)+(x+2)+.....+(x+2013)=2035147
x+(x+1)+(x+2)+.....+(x+2013)=2035147
2014x+(2013+1).2013:2=2035147
=> 2014x+2014.2013:2=2035147
=> 2014x+2007006=2035147
=> x=(2035147-2007006):2014
=> x=28141:2014
=> x= ko chia hết
x + (x + 1) + (x + 2) + ... + (x + 2013) = 2035147
2014x + 2013.2014:2 = 2035147
2014x + 2027091 = 2035147
2014x = 2035147 - 2027091
2014x = 8056
x = 8056/2014 = 4
x + (x + 1) + (x + 2) + ... + (x + 2013) = 2035147
2014x + (1 + 2 + ... + 2013) = 2035147
2014x + 2027091 = 2035147
2014x = 8056
x = 4
x+(x+1)+(X+2)+....+(x+2013)=2035147 x bằng gì vậy ạ
Số số hạng là (2013-0+1)=2014(số)
Tổng là (0+2013)*2014/2=1007*2013=2027091
=>2014x+2027091=2035147
=>x=4
x + ( x + 1) + ( x + 2 ) +......+( x + 2013 ) = 2035147
2014*x+(1+2+3+...+2013)=2035147
2014*x+2027091=2035147
2014*x=2035147-2027091
2014*x=8056
x=8056/2014
x=4
Tìm x biết: x+(x+1)+(x+2)+...+(x+2013)=2035147
x+(x+1)+(x+2)+...+(x+2013)=2035147
=> x+x+1+x+2+x+3+...+x+2013=2035147
=>2014x+(1+2+3+...+2013)=2035147
=>2014x+2027091=2035147 (tổng trên bạn tự tính nhé mik không ghi cách tính tổng đâu)
=>2014x=2035147-2027091
=> x =8056/2014
=> x = 4
Vậy x = 4
X+(X+1)+(X+2)+(X+3)+(X+4)+...+(X+2013)=2035147
Xx2014+(1+2+3+4+5+...+2013) =2035147
Xx2014+2027091 =2035147
Xx2014 =8056
X =4
https://d3.violet.vn//uploads/previews/present/4/139/141/preview.swf
tìm x biết
x + ( x + 1) + ( x + 2 ) +......+( x + 2013 ) = 2035147
x + ( x + 1) + ( x + 2 ) +......+( x + 2013 ) = 2035147
2014*x+(1+2+3+...+2013)=2035147
2014*x+2027091=2035147
2014*x=2035147-2027091
2014*x=8056
x=8056/2014
x=4
x + ( x+1) + (x+2)+...+(x+2013)=2035147
trả lời hộ mk nha
mk link cho
\(x+\left(x+1\right)+\left(x+2\right)+...\left(x+2013\right)=2035147\)\(47\)
\(2014x+\left(1+2+...+2013\right)2035147\)
\(2014x+2027091=2035147\)
\(2014x=2035147-2027091\)
\(2014x=8056\)
\(x=8056:2014\)
\(x=4\)
x + (x + 1) + (x + 2) + ... + (x + 2013) = 2 035 147
2014x + (1 + 2 + 3 + ... + 2013) = 2 035 147
2014x + 2 026 084 = 2 035 147
2014x = 2 035 147 - 2 026 084
2 014x = 9 063
x = 9 063 : 2 014
x = 4,5
Vậy x = 4,5
=))
Tìm x
a, (2x - 15) 5 = ( 2x - 15) 3
b, x + ( x + 1 ) + ( x + 2 ) + ... + ( x + 2013) = 2035147
b, x + (x + 1) + (x + 2) + ..... + (x + 2013) = 2035147
x + (x + x + .... + x) + (1 + 2 + .... + 2013) = 2035147
x + 2013x + 2027091 = 2035147
2014x = 2035147 - 2027091 = 8056
=> x = 8056 : 2014 = 4
a) ( 2x - 15 )5 = ( 2x - 15 )3
( 2x - 15 )5 - ( 2x - 15 )3 = 0
\(\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2x-15=0\\\left(2x-15\right)^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=15\\2x-15=1\text{ hoặc }2x-15=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{15}{2}\\x=8\text{ hoặc }x=7\end{cases}}}\)
b, x + ( x + 1 ) + ( x + 2 ) + ... + ( x + 2013) = 2035147
( x + x + x + ... + x ) + ( 1 + 2 + ... + 2013 ) = 2035147
2014x + 2027091 = 2035147
2014x = 2035147 - 2027091
2014x = 8056
x = 8056 : 2014
x = 4
Tính S= \(\dfrac{\left(x^2+x-3\right)^{2013}}{\left(x^5+x^4-x^3-2\right)^{2013}}+\left(x^5+x^4-x^3+1\right)^{2013}\)
với x=\(\dfrac{\sqrt{5}-1}{2}\)
Bài 2: Tìm x, biết:
a)5(x + 3)-2(3 + x) = 0
b)6x(x2 - 2) - (2 - x2) = 0
c)4x(x - 2013) - x + 2013 = 0
d)(x + 1)2 = x + 1
\(a,\Leftrightarrow3\left(x+3\right)=0\Leftrightarrow x=-3\\ b,\Leftrightarrow\left(x^2-2\right)\left(6x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=2\\6x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\\x=-\dfrac{1}{6}\end{matrix}\right.\\ c,\Leftrightarrow\left(x-2013\right)\left(4x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2013\\x=\dfrac{1}{4}\end{matrix}\right.\\ d,\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)