Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Việt Nam
Xem chi tiết
Nguyễn Việt Nam
Xem chi tiết
Trần Tuấn Trọng
17 tháng 9 2017 lúc 21:09

M= \(\frac{\sqrt{x}+6}{\sqrt{x}+1}=\frac{5}{\sqrt{x}+1}+1\)

Để M nguyên \(\Leftrightarrow\)\(\frac{5}{\sqrt{x}+1}+1\)nguyên 

\(\Leftrightarrow\)\(\frac{5}{\sqrt{x}+1}\)nguyên

\(\Leftrightarrow5⋮\left(\sqrt{x}+1\right)\)\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\in\)Ư(5)={1;5;-1;-5}

Ta có bảng :

\(\sqrt{x}+1\)-5-115
\(x\)ko có giá trị thỏa mãnko có giá trị thỏa mãn02

Vậy các số hữu tỉ a thõa mãn là (0 ;2 )

Nguyễn Việt Nam
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
14 tháng 5 2018 lúc 11:19

Ta có : \(M=\frac{\sqrt{x}+6}{\sqrt{x}+1}=\frac{\sqrt{x}+1+5}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+1}+\frac{5}{\sqrt{x}+1}=1+\frac{5}{\sqrt{x}+1}\)

Để M nguyên thì 5 chia hết cho \(\sqrt{x}+1\)

Nên : \(\sqrt{x}+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Ta có bảng : 

\(\sqrt{x}+1\)-5-115
\(\sqrt{x}\)-6 (loại)-2(loại04
x  02
Vũ Nguyễn Hiếu Thảo
15 tháng 9 2017 lúc 17:17

bài có nhầm đề không bạn? vì tử = mẫu thì M=1 rồi kìa

nguyenhoaianh
14 tháng 5 2018 lúc 11:18

Nhầm đề bài :p

Nguyễn Việt Nam
Xem chi tiết
Bùi Minh Quân
Xem chi tiết
Nguyễn Huệ Lam
4 tháng 7 2018 lúc 10:49

        \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)

\(\Leftrightarrow\sqrt[3]{m^2}=-\frac{b\sqrt[3]{m}+c}{a}\)

        \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)

\(\Leftrightarrow a.m+b\sqrt[3]{m^2}+c\sqrt[3]{m}=0\)

\(\Leftrightarrow a.m+b.\left(-\frac{b\sqrt[3]{m}+c}{a}\right)+c\sqrt[3]{m}=0\)

 \(\Leftrightarrow a^2m+b.\left(-b\sqrt[3]{m}-c\right)+ac\sqrt[3]{m}=0\)

\(\Leftrightarrow a^2m-b^2.\sqrt[3]{m}-bc+ac\sqrt[3]{m}=0\)

\(\Leftrightarrow a^2m-bc=\sqrt[3]{m}\left(b^2-ac\right)\)

\(\Leftrightarrow\frac{a^2m-bc}{\sqrt[3]{m}}=b^2-ac\)

Do \(\frac{a^2m-bc}{\sqrt[3]{m}}\in I\)và \(b^2-ac\in Q\)nên

\(\Rightarrow\hept{\begin{cases}\frac{a^2m-bc}{\sqrt[3]{m}}=0\\b^2-ac=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2m-bc=0\\b^2-ac=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2m=bc\\b^2=ac\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}a^3m=abc\\b^3=abc\end{cases}\Rightarrow a^3m=b^3}\)

Với \(a,b\ne0\) \(\Rightarrow m=1\Rightarrow\sqrt[3]{m}=1\)là số hữu tỉ ( LOẠI )

Với \(a=b=0\Rightarrow c=0\left(TM\right)\)

Vậy a=b=c=0 thỏa mãn đề bài

duonghaily
3 tháng 7 2018 lúc 21:44

mình mới học lớp 7 thôi

Đỗ Đức Thuận
24 tháng 2 2019 lúc 12:27

a=b=c=0

Đặng Quốc Khánh
Xem chi tiết
ngAsnh
31 tháng 8 2021 lúc 8:57

\(M=\dfrac{\sqrt{x}+5}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2+7}{\sqrt{x}-2}=1+\dfrac{7}{\sqrt{x}-2}\)

Để M nguyên \(\Leftrightarrow\text{ }7\text{ }⋮\text{ }\left(\sqrt{x}-2\right)\)

=> \(\sqrt{x}-2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{1;3;9\right\}\)

\(\Rightarrow x\in\left\{1;9;81\right\}\)

quang08
31 tháng 8 2021 lúc 8:58

Tham Khảo

quang08
31 tháng 8 2021 lúc 8:59

tích nha

Trang Nguyễn
Xem chi tiết
Anh Min
26 tháng 12 2021 lúc 0:20

\(A=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{2x-6\sqrt{x}+x+\sqrt{x+}3\sqrt{x}+3+3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)\(A=\dfrac{3x-13\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

Phạm Nguyễn Hoàng Anh
Xem chi tiết
Tuấn Nguyễn
12 tháng 6 2019 lúc 15:00

b) \(M=\frac{2}{\sqrt{x}-3}\in Z\Leftrightarrow\sqrt{x}-3\) là ước của 2.

\(\Leftrightarrow\sqrt{x}-3\in\left\{\pm1,\pm2\right\}\Leftrightarrow\sqrt{x}\in\left\{1,2,3,4,5\right\}\)

\(\Leftrightarrow x\in\left\{1,4,16,25\right\}\)

Đối chiếu điều kiện ta có:

\(x\in\left\{1,16,25\right\}\)

Đào Thu Hoà
12 tháng 6 2019 lúc 20:07

Để M là số nguyên thì \(\frac{2}{\sqrt{x}-3}\in Z\)    Suy ra \(\frac{2}{\sqrt{x}-3}=k\left(k\in N\right)\)

\(\Rightarrow\sqrt{x}-3=\frac{2}{k}\Leftrightarrow\sqrt{x}=\frac{2}{k}+3.\)\(\Rightarrow x=\left(\frac{2}{k}+3\right)^2\left(k\ne0\right).\)

Mà \(\sqrt{x}\ge0\Rightarrow\frac{2}{k}+3\ge0\Leftrightarrow\frac{2+3k}{k}\ge0\Leftrightarrow\hept{\begin{cases}k>0\\k\le-\frac{2}{3}\end{cases}\Leftrightarrow k\ne0\left(do-k\in Z\right).}\)

Lại theo ĐKXĐ ta có \(\hept{\begin{cases}\sqrt{x}\ne2\\\sqrt{x}\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{\sqrt{x}-3}\ne-2\\\frac{2}{\sqrt{x}-3}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}k\ne-2\\k\ne0\end{cases}.}}\)

Kết hợp lại ta có \(k\in Z,k\ne-2,k\ne0\)

Vậy để M là số nguyên thì \(x=\left(\frac{2}{k}+3\right)^2\)với \(k\in Z,k\ne-2,k\ne0.\)

Có sai chỗ nào mong mọi người chỉ cho .Cảm ơn nhiều 

P/S: Hầu hết các câu trả lời đều là tìm x nguyên , nhưng đề bài là tìm x thôi ạ! 

Tuấn Nguyễn
12 tháng 6 2019 lúc 14:57

a) Điều kiện xác định \(\hept{\begin{cases}x\ge0\\\sqrt{x}-2\ne\\\sqrt{x}-3\ne0\end{cases}0}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)

\(M=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{\sqrt{x}-3}\)

\(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{2\sqrt{x}-9-x+9+x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{2}{\sqrt{x}-3}\)

Trang Hà
Xem chi tiết
Nguyễn Minh Quang
16 tháng 7 2021 lúc 14:23

Để M có nghĩa thì \(\hept{\begin{cases}\sqrt{x}-3\ne0\\2-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}}\)

ta có \(M=\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(M=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b.\(M=5=\frac{\sqrt{x}+1}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)

Khách vãng lai đã xóa