CMR : Với mọi số thức a, b thì tồn tại các số x, y thỏa \(\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}}\)
thoả\(\)/xy-ax-by/ \(\ge\frac{1}{3}\)
/ ... / là trị tuyệt đối
Cho x, y là các số thỏa mãn đồng thời : \(\hept{\begin{cases}0\le x\le y\le1\\2x+y\le2\end{cases}.}\)
Chứng minh bất đẳng thức : \(2x^2+y^2\le\frac{3}{2}.\)
Từ \(0\le x\le y\le1\) và \(2x+y\le2\Rightarrow2x^2+xy\le2x\)(nhân cả 2 vế với \(x\ge0\))
\(\left(y-x\right)y\le y-x\)(nhân cả 2 vế của \(0\le y\le1\)với \(y-x\ge0\)(do \(x\le y\))
Cộng từng vế ta có :
\(2x^2+xy+\left(y-x\right)y\le2x+y-x\)
\(\Leftrightarrow2x^2+y^2\le x+y\)
\(\Leftrightarrow\left(2x^2+y^2\right)^2\le\left(x+y\right)^2\)
Mặt khác \(\left(x+y\right)^2=\left(\frac{1}{\sqrt{2}}.\sqrt{2}x+1.y\right)^2\le\left(\frac{1}{2}+1\right)\left(2x^2+y^2\right)\)(bất đẳng thức Bunhiacopxki)
\(\Rightarrow\left(2x^2+y^2\right)^2\le\frac{3}{2}\left(2x^2+y^2\right).\)
\(\Leftrightarrow2x^2+y^2\le\frac{3}{2}.\)(đpcm)
Chúc học tốt
Cho x, y, z thỏa mãn:
\(\hept{\begin{cases}0\le x,y,z\le1\\2x+y\le2\end{cases}}\)
Chứng minh \(2x^2+y^2\le\frac{3}{2}\)
1. cho \(-1\le a,b,c\le2\) và a+b+c=0. CMR \(a^2+b^2+c^2\le6\)
2. cho \(\hept{\begin{cases}a,b,c>0\\a+b+c=1\end{cases}}\)cmr hoán vị của \(a\sqrt[3]{1+b-c}\ge\frac{3\sqrt{17}}{2}\)
3. \(\hept{\begin{cases}a,b,c>0\\a+b+c=1\end{cases}}\)cmr: hoán vị của\(\frac{a}{a^2+1}\le\frac{9}{10}\)
4. \(\hept{\begin{cases}a,b,c>0\\a+b+c\le\frac{3}{2}\end{cases}}\)cmr: hoán vị của \(a\sqrt[3]{1+b-c}\le1\)
1.
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)
Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)
Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng
Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)
Dễ thấy dấu "=" xảy ra khi \(a=\frac{1}{3}\)
khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)
\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)
tương tự =>đpcm
lười quá khỏi nghĩ đưa link
| Inequalities (ko dịch dc thì pm)
Tìm GTNN của A = \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\) với \(\hept{\begin{cases}x,y>0\\x+y\le1\end{cases}}\)
1.Giả sử a,b,c là 3 số dương sao cho ax+b(1-x)>cx(1-x) với mọi giá trị của x. CMR khi đó với mọi giá trị của x ta cũng có
ax+c(1-x)>bx(1-x) và bx+c(1-x)>ax(1-x)
2.Cho các số thực x,y,z >0. CMR
\(16xyz\left(x+y+z\right)\le3\sqrt[3]{\left(x+y\right)^4.\left(y+z\right)^4.\left(x+z\right)^4}.\)
3.Giải các bất phương trình sau
\(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}\sqrt{x}}\)
2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)
\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)
\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)
3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)
Dễ thấy
\(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)
Từ phương trình đầu ta có:
\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)
\(\Leftrightarrow y\le1\)
Vậy \(x=y=1\)
Thôi giúp 2 bài thôi còn bài còn lại tự làm cho lớn :D
Cho x,y,z thỏa mãn: \(\hept{\begin{cases}xy+yz+zx=1\\x^2+y^2+z^2=2\end{cases}}\). Cmr : \(\frac{-4}{3}\le x,y,z\le\frac{4}{3}\)
Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)=4\)
=> \(\orbr{\begin{cases}x+y+z=2\\x+y+z=-2\end{cases}}\)
+ \(x+y+z=2\)
Thay vào Pt (1)
=> \(xy+z\left(2-z\right)=1\)
=> \(xy=\left(z-1\right)^2\)=> \(x,y,z\ge0\)( do \(x+y+z=2>0\))
Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{2-z}{2}\right)^2\)
=> \(z-1\le\frac{2-z}{2}\)=> \(z\le\frac{4}{3}\)
Hoàn toàn TT => \(x,y,z\le\frac{4}{3}\)
+ \(x+y+z=-2\)
=> \(xy+z\left(-2-z\right)=1\)
=> \(xy=\left(z+1\right)^2\)=> \(x,y,z\le0\)( do \(x+y+z=-2< 0\))
Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{-2-z}{2}\right)^2\)
=> \(\left(z+1\right)^2\le\left(\frac{z+2}{2}\right)^2\)
=> \(z+1\ge\frac{-z-2}{2}\)=> \(z\ge-\frac{4}{3}\)
TT => \(x,y,z\ge-\frac{4}{3}\)
Vậy \(-\frac{4}{3}\le x,y,z\le\frac{4}{3}\)
cho hpt \(\hept{\begin{cases}\text{ax}+y=1\\2x-ay=3\end{cases}}\)
a. cmr với mọi a hệ có nghiệm duy nhất
b. tìm các giá trị của a để hpt có nghiệm duy nhất (x;y) thoả mãn x>0, y>0
cho hpt \(\hept{\begin{cases}ax+y=1\\2x-ay=3\end{cases}}\)
a. cmr với mọi a hệ có nghiệm duy nhất
b. tìm các giá trị của a để hpt có nghiệm duy nhất (x;y) thoả mãn x>0, y>0
Tìm x để biểu thức có nghĩa \(\frac{\sqrt{4-x}}{\sqrt{x+1}}+\sqrt{9-x^2}\)
Biểu thức có nghĩa khi \(\hept{\begin{cases}4-x\ge0\\x+1>0\\9-x^2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le4\\x\ge1\\\left(3-x\right)\left(3+x\right)\ge0\end{cases}}\)\(\left(1\right)\)
\(\left(3-x\right)\left(3+x\right)\ge0\)
\(TH1:\hept{\begin{cases}3-x\ge0\\3+x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le3\\x\ge-3\end{cases}\Rightarrow}-3\le x\le3}\)\(\left(2\right)\)
\(TH2\hept{\begin{cases}3-x< 0\\3+x< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< -3\end{cases}\left(ktm\right)}}\)
TỪ ( 1 ) và ( 2 ) ta có : \(\hept{\begin{cases}1\le x\le4\\-3\le x\le3\end{cases}\Rightarrow1\le x\le3}\)
Vậy với \(1\le x\le3\)thì biểu thức xác định
Xl nha , ké chút ạ
Sai bất đẳng thức giữa của (1) rồi\(x+1>0\Leftrightarrow x>-1.\)
Suy ra phải sửa luôn mấy phần bên dưới. Và kết luận : \(-1< x\le3\)