Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Văn Nhựt
Xem chi tiết
Sakura Okita
Xem chi tiết
Thùy Lê
Xem chi tiết
chipchip
27 tháng 2 2016 lúc 19:53

cau h cho minh di nhe 

cua minh co chu chip chip day

Nguyễn thị thu trang
Xem chi tiết
Không Tên
29 tháng 4 2018 lúc 17:49

C/m BĐT phụ:   \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)  (*)      (x,y dương)

Ta có:   \(\left(x-y\right)^2\ge0\)       

\(\Leftrightarrow\)\(x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\)\(x^2+y^2\ge2xy\)

\(\Leftrightarrow\)\(x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)   (BĐT đã đc chứng minh)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y\)

ÁP dụng BĐT (*) ta có:

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\)  (1)

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{p-b+p-c}=\frac{4}{2p-\left(b+c\right)}=\frac{4}{a}\)  (2)

\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{p-c+p-a}=\frac{4}{2p-\left(c+a\right)}=\frac{4}{b}\) (3)

Lấy (1); (2); (3) cộng theo vế ta được:

          \(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\)\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)  (đpcm)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=c\)

Khi đó  \(\Delta ABC\)là tam giác đều

Cao Thanh Nga
Xem chi tiết
Đinh quang hiệp
20 tháng 6 2018 lúc 16:03

vì a;b;c là độ dài 3 cạnh của 1 tam giác áp dụng bđt tam giác ta có\(\Rightarrow\hept{\begin{cases}a+b>c\Rightarrow a+b-c>0\\a+c>b\Rightarrow a+c-b>0\\b+c>a\Rightarrow b+c-a>0\end{cases}}\)

\(\Rightarrow\sqrt{a+b-c};\sqrt{a+c-b};\sqrt{b+c-a}\)luôn được xác định\(\left(\sqrt{a+b-c}-\sqrt{a+c-b}\right)>=0\Rightarrow a+b-c-2\sqrt{\left(a+b-c\right)\left(a+c-b\right)}+a+c-b\)\(>=0\Rightarrow a+b-c+a+c-b>=2\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\Rightarrow\frac{a+b-c+a+c-b}{2}=\frac{2a}{2}\)

\(=a>=\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\)

tương tự ta có :\(b>=\sqrt{\left(a+b-c\right)\left(b+c-a\right)};c>=\sqrt{\left(a+c-b\right)\left(b+c-a\right)}\)

\(\Rightarrow abc>=\sqrt{\left(a+b-c\right)^2\left(a+c-b\right)^2\left(b+c-a\right)^2}=\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)

dấu = xảy ra khi a=b=c

Đinh quang hiệp
20 tháng 6 2018 lúc 16:07

dòng 3 là vì  \(\left(\sqrt{a+b-c}-\sqrt{a+c-b}\right)^2>=0\)nhá

Lionel Messi
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 7 2021 lúc 17:21

Tìm điều gì của A em? Chứ với mỗi một bộ số a;b;c sẽ cho 1 kết quả A khác nhau rồi đó

Lionel Messi
29 tháng 7 2021 lúc 20:01

Dạ  thầy là tìm gtnn của A ạ

 

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 11:38

\(A=\dfrac{a^2b}{abc}+\dfrac{a^2c}{abc}+\dfrac{ab^2}{abc}+\dfrac{b^2c}{abc}=\dfrac{a}{c}+\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{b}{c}=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{c}\)

\(A=\dfrac{c^2}{ab}+\dfrac{a+b}{c}\ge\dfrac{4c^2}{\left(a+b\right)^2}+\dfrac{a+b}{c}\)

\(A\ge\dfrac{a+b}{2c}+\dfrac{a+b}{2c}+\dfrac{\sqrt{2}c^2}{\left(a+b\right)^2}+\dfrac{\left(4-\sqrt{2}\right)c^2}{\left(a+b\right)^2}\) 

\(A\ge3\sqrt[3]{\dfrac{\left(a+b\right)^2\sqrt{2}c^2}{4c^2\left(a+b\right)^2}}+\dfrac{\left(4-\sqrt{2}\right)c^2}{2\left(a^2+b^2\right)}=2+\sqrt{2}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{c}{\sqrt{2}}\)

Nguyet9ak47
Xem chi tiết
Đinh Đức Hùng
16 tháng 9 2017 lúc 20:43

Vì a:b:c là độ dài  cạnh tam giác nên \(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}\Rightarrow\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}}\)

Áp dụng bđt AM - GM ta có :

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=\frac{2b}{2}=b\)(1)

\(\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\le\frac{a+b-c+c+a-b}{2}=\frac{2a}{2}=a\)(2)

\(\sqrt{\left(b+c-a\right)\left(c+a-b\right)}\le\frac{b+c-a+c+a-b}{2}=\frac{2c}{2}=c\)(3)

Nhân vế với vế của (1); (2);(3) lại ta được :

\(\sqrt{\left(a+b-c\right)^2\left(b+c-a\right)^2\left(c+a-b\right)^2}\le abc\)

\(\Leftrightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)(đpcm)

Phạm Hoàng Việt
Xem chi tiết
zZz 5g ThCh zZz
14 tháng 2 2016 lúc 10:05

lên rùi nè nhanh lên

zZz 5g ThCh zZz
14 tháng 2 2016 lúc 10:06

em gửi rồi nè

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 10 2019 lúc 4:52