Chứng minh rằng : \(\frac{k}{n\left(n+k\right)}=\frac{1}{n}-\frac{1}{n+k}\) ( với n,k E N, n #0 )
Chứng minh rằng : \(\frac{k}{n\left(n+k\right)}=\frac{1}{n}-\frac{1}{n+k}\)
\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{n+k-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)
=> điều phải chứng minh
\(\frac{k}{n\left(n+k\right)}=\frac{1}{n+k}\)
Vì n(n+k) chia hết cho cả n và n + k nên ta lấy n(n+k) là mẫu chung
\(\frac{1}{n}=\frac{1.\left(n+k\right)}{n.\left(n+k\right)}=\frac{n+k}{n\left(n+k\right)}\) ; \(\frac{1}{n+k}=\frac{1.n}{n\left(n+k\right)}=\frac{n}{n\left(n+k\right)}\) (nhân cả tử phân số này cho phân số kia)
\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{k+n-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)
\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n+k}{n\left(n+k\right)}=\frac{n+k-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)
\(=>đpcm\)
Gửi : Nguyễn Huy Thắng ( Quy nạp )
CMR : 1.2+2.3+3.4+...+n.(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Giải :
Đặt biểu thức trên là (*)
Với n = 1 Thì (*) \(\Leftrightarrow1.2=\frac{1.2.3}{3}\) ( Đúng )
Giả sử với (*) đúng với n=K
=> (*) <=> 1.2+2.3+...+k.(k+1)=\(.\frac{k.\left(k+1\right)\left(k+2\right)}{3}\)
Ta phải chứng minh (*) cùng đúng với 2=k+1
thật vậy với n=k+1
=>(*) <=> 1.2+2.3+...+k.(k+1)+(k+1).(k+2)=\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
=> \(\frac{k.\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right).\left(k+2\right)=\frac{\left(k+1\right).\left(k+2\right)\left(k+3\right)}{3}\)
=> \(\frac{k}{3}+1=\frac{k+3}{3}\Leftrightarrow\frac{k}{3}+1=\frac{k}{3}+1\)( Đúng )
=> (*) đúng với n = k+1
Vậy (*) đúng với mọi n thuộc N*
Sai hay đúng vậy :)
Chứng minh: \(\frac{n+1}{n+2}\left(\frac{1}{C_{n+1}^k}+\frac{1}{C_{n+1}^{k+1}}\right)=\frac{1}{C_n^k}\)
với \(a_1,a_2,a_3,.....,a_n>0;a_1+a_2+a_3+....+a_n=k\)
Chứng minh\(\left(a_1+\frac{1}{a_2}\right)^2+\left(a_2+\frac{1}{a_3}\right)^2+...+\left(a_n+\frac{1}{a_1}\right)^2\ge\frac{1}{n}\left(\frac{k^2+n^2}{k}\right)^2\)
chung minh: \(\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n.\left(n+k\right)}\)
Ta có :
\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n.\left(n+k\right)}-\frac{n}{n.\left(n+k\right)}=\frac{n+k-n}{n.\left(n+k\right)}=\frac{k}{n.\left(n+k\right)}\)
Vậy \(\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n.\left(n+k\right)}\)
\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)
\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{n+k-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\) ( ĐPCM)
Chứng minh rằng nếu phương trình \(x^2+2mx+n=0\) có nghiệm thì phương trình \(x^2+2\left(k+\frac{1}{k}\right)mx+n\left(k+\frac{1}{k}\right)^2=0\)cũng có nghiệm.
Do \(x^2+2mx+n=0\) có nghiệm \(\Rightarrow m^2-n\ge0\)
Xét pt: \(x^2+2\left(k+\dfrac{1}{k}\right)mx+n\left(k+\dfrac{1}{k}\right)^2=0\)
\(\Delta'=\left(k+\dfrac{1}{k}\right)^2m^2-n\left(k+\dfrac{1}{k}\right)^2=\left(k+\dfrac{1}{k}\right)^2\left(m^2-n\right)\ge0\) với mọi k
\(\Rightarrow\)Pt đã cho có nghiệm
anh phương ơi dù em ko bt kiến thức lớp 9 nhưng anh k em 1 phát em có 1 sp thôi
Tính các tổng :
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\) ( Hướng dẫn : \(\frac{1}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\))
b) \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
( Hướng dẫn : \(\frac{1}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}\left(\frac{1}{k}+\frac{1}{k+2}\right)-\frac{1}{k+1}\))
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(A=1-\frac{1}{n+1}\)
a) Ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(A=1-\frac{1}{n+1}\)
\(A=\frac{n+1}{n+1}-\frac{1}{n+1}\)
\(A=\frac{n}{n+1}\)
Học tốt nha^^
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\)
\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2B=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow B=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\)
CMR: \(\frac{k}{n\left(n+k\right)}=\frac{1}{n}+\frac{-1}{n+k}\)
Với mọi n thuộc Z*, k thuộc N*.
giúp mình với!
Chứng minh :
\(\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=1+\frac{1}{k-1}-\frac{1}{k}\)
VỚI \(k\varepsilon N,k\ge2\)
ta có \(\left(1+\frac{1}{k}-\frac{1}{k-1}\right)^2\)
= \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)\(+\frac{2}{k-1}-\frac{2}{k}-\frac{2}{k\left(k-1\right)}\)
=\(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2k-2k+2-2}{k\left(k-1\right)}\)
= \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)
=> \(\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}\)= \(1+\frac{1}{k-1}-\frac{1}{k}\)(đpcm)
CÂU CỦA BẠN KIA SAI R
bạn ấy bị sai cái phần mà cộng cho cả tử và mẫu cho a/k