Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hyu Hinata
Xem chi tiết
Minh Triều
1 tháng 10 2015 lúc 17:01

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{n+k-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)

=> điều phải chứng minh

Nguyễn Ngọc Quý
1 tháng 10 2015 lúc 17:03

\(\frac{k}{n\left(n+k\right)}=\frac{1}{n+k}\)

Vì n(n+k) chia hết cho cả n và n  +  k nên ta lấy n(n+k) là mẫu chung

\(\frac{1}{n}=\frac{1.\left(n+k\right)}{n.\left(n+k\right)}=\frac{n+k}{n\left(n+k\right)}\) ; \(\frac{1}{n+k}=\frac{1.n}{n\left(n+k\right)}=\frac{n}{n\left(n+k\right)}\) (nhân cả tử phân số này cho phân số kia)

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{k+n-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)

Feliks Zemdegs
1 tháng 10 2015 lúc 17:04

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n+k}{n\left(n+k\right)}=\frac{n+k-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)

\(=>đpcm\)

Phương Trình Hai Ẩn
Xem chi tiết
Nguyễn Ngọc Minh Long
Xem chi tiết
Ngọc Duyên Trần Thị
29 tháng 10 2016 lúc 0:57

chỗ nào không cứ hỏi mình nhébanhqua

Hoán vị, chỉnh hợp, tổ hợp

Sherry
Xem chi tiết
Susanna
Xem chi tiết
Nguyễn Trang A1
24 tháng 3 2016 lúc 21:33

Ta có :

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n.\left(n+k\right)}-\frac{n}{n.\left(n+k\right)}=\frac{n+k-n}{n.\left(n+k\right)}=\frac{k}{n.\left(n+k\right)}\)

Vậy \(\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n.\left(n+k\right)}\)

lê dạ quynh
24 tháng 3 2016 lúc 21:32

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)

Nguyễn Đăng Diện
24 tháng 3 2016 lúc 21:32

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{n+k-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\) ( ĐPCM)

Lê Song Phương
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2022 lúc 21:36

Do \(x^2+2mx+n=0\) có nghiệm \(\Rightarrow m^2-n\ge0\)

Xét pt: \(x^2+2\left(k+\dfrac{1}{k}\right)mx+n\left(k+\dfrac{1}{k}\right)^2=0\)

\(\Delta'=\left(k+\dfrac{1}{k}\right)^2m^2-n\left(k+\dfrac{1}{k}\right)^2=\left(k+\dfrac{1}{k}\right)^2\left(m^2-n\right)\ge0\) với mọi k

\(\Rightarrow\)Pt đã cho có nghiệm

đức
4 tháng 3 2022 lúc 21:19

em đọc ko hiểu gì hết

Khách vãng lai đã xóa
đức
4 tháng 3 2022 lúc 21:21

anh phương ơi dù em ko bt kiến thức lớp 9 nhưng anh k em 1 phát em có 1 sp thôi

Khách vãng lai đã xóa
Minh
Xem chi tiết
KAl(SO4)2·12H2O
2 tháng 11 2019 lúc 15:34

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(A=1-\frac{1}{n+1}\)

Khách vãng lai đã xóa
Hoàng Thanh Huyền
2 tháng 11 2019 lúc 15:35

a) Ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)

           \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)

           \(A=1-\frac{1}{n+1}\)

           \(A=\frac{n+1}{n+1}-\frac{1}{n+1}\)

           \(A=\frac{n}{n+1}\)

Học tốt nha^^

Khách vãng lai đã xóa
Kiệt Nguyễn
2 tháng 11 2019 lúc 19:25

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\)

\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2B=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow B=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\)

Khách vãng lai đã xóa
Nguyễn Đức Kiên
Xem chi tiết
Phạm Thị Mỹ Dung
Xem chi tiết
kaneki_ken
9 tháng 11 2017 lúc 21:16

ta có \(\left(1+\frac{1}{k}-\frac{1}{k-1}\right)^2\)

        = \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)\(+\frac{2}{k-1}-\frac{2}{k}-\frac{2}{k\left(k-1\right)}\)

       =\(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+\frac{2k-2k+2-2}{k\left(k-1\right)}\)

      = \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}\)

=> \(\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}\)\(1+\frac{1}{k-1}-\frac{1}{k}\)(đpcm)

Khoa Đỗ
16 tháng 6 lúc 20:13

CÂU CỦA BẠN KIA SAI R

bạn ấy bị sai cái phần mà cộng cho cả tử và mẫu cho a/k

 

Khoa Đỗ
16 tháng 6 lúc 20:15

troll đấy:)