Cho tam giác ABC vuông tại A, đường cao AH, từ H kẻ đường thẳng vuông góc với AC tại K. Vẽ tia phân giác của \(\widehat{HAC}\)cắt HK tại I. từ I kẻ đường thẳng song song với BC cắt AC tại D. Chứng minh rằng: \(\widehat{AIH}=\widehat{AID}\)
Cho tam giác ABC, phân giác AD, qua D kẻ đường thẳng song song với AB cắt AC tại E. Qua E kẻ đường thẳng song song với BC cắt AB tại F
a) Chứng minh AE=BF
b) Kẻ phân giác ngoài tại A của tam giác ABC cắt DE tại G. Chứng minh rằng E là trung điểm của DG
c) Đường thẳng vuông góc với AD tại D cắt AB, AC lần lượt tại H, K. Chứng minh AH=2FB
d) Từ E kẻ đường thẳng song song với DK cắt AD tại I.Chứng minh H, I, G thẳng hàng
Cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH.
a/ Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB2 = BH.BC
b/ Vẽ tia phân giác của góc ABC cắt AH tại I, cắt AC tại E. Chứng minh IH/IA = BI/BE
c/ Từ E kẻ đường thẳng song song với AH cắt tia BA tại P. Gọi M là giao điểm của PE và CB. Chứng minh PC2 = AH.PM + CE.CA
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA
=>BH/AB=BC/BA(1)
hay \(AB^2=BH\cdot BC\)
Câu b đề sai rồi bạn
Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Trên tia HC lấy điểm K sao cho AH = HK. Từ K kẻ đường thẳng song song với AH, đường thẳng này cắt AC tại I. BI cắt AK tại E
1) Chứng minh tam giác ABC đồng dạng với HBA
2) BK.EI = BE.KI
3) Gọi M là trug điểm của BI. Chứng minh:
a) HM là tia phân giác của góc AHK
b) tam giác AHM đồng dạng với tam giác AKI
Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Trên tia HC lấy điểm K sao cho AH=HK. Từ K kẻ đường thẳng song song với AH, đường thẳng này cắt AC tại I. BI cắt AK tại E 1) Chứng minh tam giác ABC đồng dạng với HBA 2) BK.EI = BE.KI 3) Gọi M là trug điểm của BI. Chứng minh: a) HM là tia phân giác của góc AHK b) tam giác AHM đồng dạng với tam giác AKI
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC tại H. D thuộc AC sao cho AH=AD.Đường thẳng vuông góc với ACtaij D cắt BC tại M.Chứng minh
a) Am là phân giác của góc HAC
b) AB=BM
c) từ m kẻ đường thawgr song song với AH cắt AC tại E. Chứng Minh BE vuông góc với AM
Cho tam giác ABC vuông tại A Có đường cao AH . Biết HC =16;BC=25
c)Phân giác của góc ABC cắt AH tại M và cắt AC tại N. Từ H kẻ đường thẳng song song với MN, cắt AC tại K. Chứng minh AH=AK.
d)Cm CK.AB=CH.AN
Mk làm đc binh nhiu thui =))
c)
vi KH//NM
=>goc KHM =goc HMB (goc so le trong) (*)
xet tam giac HMB
goc HMB + goc HBM=90 do (1)
xet tam giac NBA
goc ANB+ goc NBA =90 do (2)
mat khac goc HBM= goc NBA (3)
=>GOC HMB =goc ANB (*)
ma goc ANB=goc AKH (goc dong vi)(*)
ket hop 3( *) => tam giac AKH can tai A => AH=AK
K đúng cho mk nha!
Cho tam giác ABC có AB lớn hơn AC tia phân giác của góc A cắt BC tại D qua B kẻ đường thẳng vuông góc với AC cắt AC tại E a Chứng minh AB =AE b qua qua e kẻ đường thẳng song song với BC cắt AD tại F kẻ đường hai đường thẳng song song với BC tại K
Gọi Bx là tia đối của tia BA. Lấy E trên AC sao cho AB = AE
Xét tam giác BAD=EAD c-g-c => BD = DE và DEC = CBx
Trong tam giác ABC, BAC + ABC + ACB = 180 => ACB = 180 - BAC - ABC => ACB < 180 - ABC
Ta có DBx + ABC = 180 (hai góc kề bù) => DBx = 180 - ABC
=>ACB < DBx => ACB < DEC => Trong tam giác DEC, DC > DE (Quan hệ giữa góc và cạnh)
Vậy BD < DC
Cho tam giác ABC vuông tại A, đường cao AH, HB=9cm; HC=16cm. a) chứng minh : AB^2 = HB.BC b) Tính AB; AC; AH c) Phân giác của góc B cắt AH tại I, từ I kẻ đường thẳng song song với BC cắt AC tại K. Chứng minh AK/KC = AB/HC d) Gọi E là giao điểm của BI với AC chứng minh tam giác KIE đồng dạng với tam giác ABI
a: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
=>AC=20(cm)