Tìm x biết:
\(\left(\frac{3}{5}\right)^x.\left(\frac{625}{81}\right)^3=\frac{243}{3125}\)
Tìm x biết : \(\left(\frac{1}{3}\right)^x\left(\frac{1}{9}\right)^x\left(\frac{1}{27}\right)^x\left(\frac{1}{81}\right)^x\left(\frac{1}{243}\right)^x=\left(-\frac{1}{3}\right)^{30}\)
bài 1: Tìm x,y biết rằng:
\(x+(-\frac{31}{12})^2=\left(\frac{49}{12}\right)^2-x=y^2\)
bài 2: tìm x biết:
a.\(5^x.\left(5^3\right)^2=625\) b.\(\left(\frac{12}{25}\right)^x=\left(\frac{5}{3}\right)^{-2}-\left(-\frac{3}{5}\right)^4\) c.\(\left(-\frac{3}{4}\right)^{3x-1}=\frac{256}{81}\)
d.\(172x^2-7^9:98^3=2^{-3}\)
Bài 3: Tìm x \(\varepsilon\)N biết:
a.\(8< 2^x\le2^9\times2^{-5}\) b.\(27< 81^3:3^x< 243\) \(\left(\frac{2}{5}\right)^x>\left(\frac{5}{2}\right)^{-3}\times\left(-\frac{2}{5}\right)^2\)c.
Bài 1:
Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Leftrightarrow2x=\frac{1440}{144}=10\)
\(\Rightarrow x=5\)
Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)
=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)
tìm X biết
\(5^x.\left(5^3\right)^2=625\)
\(27< 81^3:3^x< 243\)
\(\left(5x+1\right)^2=\frac{36}{49}\)
\(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\)
giúp mình vs nha
a)\(5^x.\left(5^3\right)^2=625\)
\(5^x.5^6=5^4\)
\(5^x=5^{-2}\)
\(x=-2\)
b)\(27< 81^3:3^x< 243\)
\(3^3< \left(3^4\right)^3:3^x< 3^5\)
\(3^3< 3^{12}:3^x< 3^5\)
\(3^{12}:3^x=3^4\)
\(3^x=3^3\)
\(x=3\)
c)\(\left(5x+1\right)^2=\frac{36}{49}\)
\(\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\)
\(5x+1=\frac{6}{7}\)
\(5x=\frac{-1}{7}\)
\(x=\frac{-1}{35}\)
d)\(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\)
\(\left(x-\frac{2}{9}\right)^3=\left[\left(\frac{2}{3}\right)^2\right]^3\)
\(x-\frac{2}{9}=\frac{4}{9}\)
\(x=\frac{6}{9}=\frac{2}{3}\)
\(5^x.\left(5^3\right)^2=625\)
\(\Rightarrow5^x.5^6=5^4\)
\(\Rightarrow5^{x+6}=5^4\Rightarrow x+6=4\Rightarrow x=-2\)
Đề sai rồi bạn : Phải là :
\(5^x:\left(5^3\right)^2=625\)
\(\Rightarrow5^x:5^6=5^4\)
\(\Rightarrow5^{x-6}=5^4\)
\(\Rightarrow x-6=4\Rightarrow x=10\)
Nhứng nếu đề đúng thì bạn có thể lấy KQ trên
Tìm \(x\)sao cho:
\(\left(x+\frac{1}{1\cdot3}\right)+\left(x+\frac{1}{3\cdot5}\right)+\left(x+\frac{1}{5\cdot7}\right)+...+\left(x+\frac{1}{23\cdot25}\right)=11\cdot x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
Chỉ biết \(x\) = \(\frac{109}{6075}\) thôi
Tìm x biết \(\left|x-30\right|-6001=\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(\frac{3^{2007}}{2010}-81\right)\)
Dễ thấy (\(\frac{3}{4}\)-81); (\(\frac{3^2}{5}\)-81); (\(\frac{3^3}{6}\)-81);... (\(\frac{3^{2007}}{2010}\)-81) có dạng (\(\frac{3^x}{3+x}\)-81) và x\(\varepsilon\){1;2;3;...2007}.
Nếu x=6 thì \(\frac{3^x}{3+x}\)-81=\(\frac{3^6}{3+6}\)-81=0
=> (\(\frac{3}{4}\)-81) (\(\frac{3}{4}\)-81)(\(\frac{3^3}{6}\)-81)...(\(\frac{3^6}{3+6}\)-81)...(\(\frac{3^{2007}}{2010}\)-81)=0
Mà |x-30|-6001=(\(\frac{3}{4}\)-81) (\(\frac{3}{4}\)-81)(\(\frac{3^3}{6}\)-81)...(\(\frac{3^6}{3+6}\)-81)...(\(\frac{3^{2007}}{2010}\)-81)
=>|x-30|-6001=0
=>|x-30|=6001
=>x-30=6001 hoặc x-30=-6001
=>x=6031 hoặc x=-5971
-------------------The end----------------
\(\text{|x - 30| - 6001 = }\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow\text{ |x - 30| - 6001 = }\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(\frac{3^6}{9}-3^4\right)...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow\left|x-30\right|- 6001 = \left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(3^4-3^4\right)...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow|x - 30| - 6001 = \left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...0...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow\text{|x - 30| - 6001 = }0\)
\(\Rightarrow\left|x-30\right|=6001\)
\(\Rightarrow x-30=6001\)hoặc \(x-30=-6001\)
\(\Rightarrow x=6031\)hoặc\(x=-5971\)
Vậy: x= 6031 hoặc x= -5971
(Nói thật thì mình mới lớp 7, đây có phải của lớp 8 không?)
Tìm x:
\(\left(x+\frac{1}{1x3}\right)+\left(x+\frac{1}{3x5}\right)+......+\left(x+\frac{1}{23x25}\right)=11.x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{81}+\frac{1}{243}\right)\)
Help me please! Thanks a lot!
Nhân 2 cả 2 vế lên:
\(\left(2x+\frac{2}{1x3}\right)+...+\left(2x+\frac{2}{23x25}\right)=22x+\frac{2}{3}+\frac{2}{9}+\frac{2}{81}+\frac{2}{243}\)2/243
\(24x+\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{23}-\frac{1}{25}\right)=22x+\frac{162+54+6+2}{243}\)
\(24x+\frac{24}{25}=22x+\frac{224}{243}\)
\(2x=\frac{224}{243}-\frac{24}{25}\)
\(2x=-\frac{232}{6025}\)
\(x=\frac{-116}{6075}\)
\(\left(x+\frac{1}{1.3}\right)+\left(x+\frac{1}{3.5}\right)+...+\left(x+\frac{1}{23.25}\right)=11.x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{81}+\frac{1}{243}\right)\)
\(12x+\left[\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)\right]=11.x+\left(\frac{81}{243}+\frac{27}{243}+\frac{3}{243}+\frac{1}{243}\right)\)
\(12x+\left[\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{25}\right)\right]=11.x+\frac{112}{243}\)
\(12x+\left(\frac{1}{2}.\frac{24}{25}\right)=11.x+\frac{112}{243}\)
\(12x+\frac{12}{25}=11x+\frac{112}{243}\)
\(11x-12x=\frac{112}{243}-\frac{12}{25}\)
\(-1x=-\frac{116}{6075}\)
\(x=-\frac{116}{6075}\div\left(-1\right)\)
\(x=\frac{116}{6075}\)
Tìm x \(\in\) N biết :
a)\(8< 2^x\le2^9.2^{-5}\)
b) \(27< 81^3:3^x< 243\)
c)\(\left(\frac{2}{5}\right)^x>\left(\frac{5}{2}\right)^{-3}.\left(\frac{-2}{5}\right)^2\)
a,\(8< 2^x\le2^9.2^{-5}\)
\(2^3< 2^x\le2^4\)
\(\Rightarrow x=4\)
b, \(27< 81^3.3^x< 243\)
\(3^3< 3^{12-x}< 3^5\)
\(\Rightarrow3< 12-x< 5\)
12-x=4
x=8
c,\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^3.\left(\frac{2}{5}\right)^2\)
\(\left(\frac{2}{5}\right)^x>\left(\frac{2}{5}\right)^5\)
\(\Rightarrow x>5\)
x=6;7;8........
Tìm x
a) \(\frac{3}{5}^{2x+1}\)=\(\frac{81}{625}\)
b)\(\left(\frac{2}{3}^x\right)\). \(\left(\frac{2}{3}^3\right)\)=\(\frac{32}{243}\)
c)(2x-1)\(^2\)=(2x-1)\(^3\)
\(a)\)\(\left(\frac{3}{5}\right)^{2x+1}=\frac{81}{625}\)
\(\Leftrightarrow\)\(\left(\frac{3}{5}\right)^{2x+1}=\left(\frac{3}{5}\right)^4\)
\(\Leftrightarrow\)\(2x+1=4\)
\(\Leftrightarrow\)\(x=\frac{3}{2}\)
Vậy \(x=\frac{3}{2}\)
\(b)\)\(\left(\frac{2}{3}\right)^x.\left(\frac{2}{3}\right)^3=\frac{32}{243}\)
\(\Leftrightarrow\)\(\left(\frac{2}{3}\right)^{x+3}=\left(\frac{2}{3}\right)^5\)
\(\Leftrightarrow\)\(x+3=5\)
\(\Leftrightarrow\)\(x=2\)
Vậy \(x=2\)
\(c)\)\(\left(2x-1\right)^2=\left(2x-1\right)^3\)
\(\Leftrightarrow\)\(\left(2x-1\right)^3-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\)\(\left(2x-1\right)^2\left(2x-1-1\right)=0\)
\(\Leftrightarrow\)\(\left(2x-1\right)^2\left(2x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(2x-1\right)^2=0\\2x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}}\)
Vậy \(x=\frac{1}{2}\) hoặc \(x=1\)
Chúc bạn học tốt ~
\(\left[x+\frac{1}{3}\right]+\left[x+\frac{1}{15}\right]+\left[x+\frac{1}{35}\right]+...+\left[x+\frac{1}{575}\right]\)
\(=11xx+\left[\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right]\)
\(\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{15}\right)+....+\left(x+\frac{1}{575}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(13x+\left(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(13x+\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(2x+\frac{12}{25}=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
Đặt \(A=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(3A=1+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
\(3A-A=1-\frac{1}{3^5}=\frac{242}{243}=2A\)
=> \(A=\frac{121}{243}\)
=> \(2x+\frac{12}{25}=\frac{121}{243}\)
=> \(2x=\frac{121}{243}-\frac{12}{25}=\frac{109}{6075}\)
=> x = ......