Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thy Châu Nghiêm
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 23:14

a: (2x-3)^2>=0

=>-(2x-3)^2<=0

=>D<=-3

Dấu = xảy ra khi x=3/2

b: (2x-5)^2>=0

(y+1/2)^2>=0

=>(2x-5)^2+(y+1/2)^2>=0

=>D>=2022

Dấu = xảy ra khi x=5/2 và y=-1/2

Vũ Hà Phương
Xem chi tiết
Dang Tung
17 tháng 12 2023 lúc 8:10

\(D=\dfrac{\left|x\right|+2023}{\left|x\right|+2022}=\dfrac{\left|x\right|+2022}{\left|x\right|+2022}+\dfrac{1}{\left|x\right|+2022}\\ =1+\dfrac{1}{\left|x\right|+2022}\)

Nhận thấy : \(\left|x\right|\ge0\forall x\inℝ\)

\(\Rightarrow\left|x\right|+2022\ge2022\)

\(\Rightarrow\dfrac{1}{\left|x\right|+2022}\le\dfrac{1}{2022}\)

\(\Rightarrow D=1+\dfrac{1}{\left|x\right|+2022}\le1+\dfrac{1}{2022}=\dfrac{2023}{2022}\)

Dấu = xảy ra khi : \(\left|x\right|=0\Rightarrow x=0\)

Vậy GTLN của D là : \(\dfrac{2023}{2022}\) tại x=0

addfx
Xem chi tiết
Kiều Vũ Linh
2 tháng 10 2023 lúc 16:23

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 1 2022 lúc 14:41

\(C\ge30\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=-1

nguyễn như bảo hân
Xem chi tiết
★Čүċℓøρş★
6 tháng 12 2019 lúc 21:35

D = x - x2 + 3

D = - x2 + x + 3

D = - ( x- x - 3 )

D = - [ x- 2 . x . 1 / 2 + ( 1 / 2 )2 - ( 1 / 2 )2 - 3 ]

D = - [ ( x - 1 / 2 )2 - 13 / 4 ]

D = - ( x - 1 / 2 )2 + 13 / 4 \(\le\)13 / 4

Dấu " = " xảy ra \(\Leftrightarrow\)x - 1 / 2 = 0

                             \(\Rightarrow\)x              = 1 / 2

Max D = 13 / 4 \(\Leftrightarrow\)x = 1 / 2

Khách vãng lai đã xóa
Hoàng Nguyễn Văn
6 tháng 12 2019 lúc 21:31

D=x-x^2+3

D= -[x^2 -x +1/4 ] + 13/4 

D=-(x-1/2)^2 +13/4 

Vì -(x-1/2)^2<=0 => D<=13/4

Dấu = xảy ra <=> x-1/2=0 <=> x=1/2

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
6 tháng 12 2019 lúc 21:32

\(D=x-x^2+3\)

\(D=-\left(x^2-x+3\right)\)

\(D=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)

\(D=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)

\(D=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}\le\frac{-11}{4}\)

Dấu bằng xảy ra 

\(\Leftrightarrow x-\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy Max \(D=\frac{-11}{4}\)\(\Leftrightarrow x=\frac{1}{2}\)

Khách vãng lai đã xóa
Nguyễn Ngọc Anh
Xem chi tiết
Nguyễn Ngọc Anh
2 tháng 2 2017 lúc 9:25

Bạn giải cụ thể ra đc không?

Nguyễn Phúc Cường
Xem chi tiết
Mai Thành Đạt
31 tháng 5 2016 lúc 9:37

1) \(C=-\left(x^2-6x+9\right)+5\)

\(\Leftrightarrow C=-\left(x-3\right)^2+5.\)

Vậy GTLN của C là 5 <=> x=3

3) \(E=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+5\)

\(E=-\left(x+2\right)^2-\left(y-1\right)^2+5\)

Vậy GTNN của E bằng 5 <=> x=-2 và y=1

Cô Hoàng Huyền
31 tháng 5 2016 lúc 11:03

Dương: Câu c là GTLN em nhé :)

b. Ta chia ra thành các trường hợp:

- Với \(x\ge3,D=\left(x-3\right)\left(2-x+3\right)=\left(x-3\right)\left(5-x\right)=-x^2+8x-15=1-\left(x-4\right)^2\le1\)

- Với \(x< 3,D=\left(3-x\right)\left(2-3+x\right)=\left(3-x\right)\left(x-1\right)=-x^2+4x-3=1-\left(x-2\right)^2\le1\)

Vậy GTLN của D = 1 khi x = 4 hoặc x = 2.

Chúc em học tốt :))

nguyễn trọng minh đức
Xem chi tiết
FL.Hermit
14 tháng 8 2020 lúc 23:21

Đặt:     \(A=\left(x-3\right)\left(x+3\right)+2\left(2x+1\right)^2\)

=>       \(A=x^2-9+2\left(4x^2+4x+1\right)\)

=>       \(A=x^2-9+8x^2+8x+2\)

=>       \(A=9x^2+8x-7\)

=>       \(A=\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\)

Có:      \(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)

=>      \(A\ge-\frac{79}{9}\)

DẤU "=" XẢY RA <=>     \(\left(3x+\frac{4}{3}\right)^2=0\)

<=>     \(x=-\frac{4}{9}\)

Vậy A min =     \(-\frac{79}{9}\)      <=>       \(x=-\frac{4}{9}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
15 tháng 8 2020 lúc 9:14

( x - 3 )( x + 3 ) + 2( 2x + 1 )2

= x2 - 9 + 2( 4x2 + 4x + 1 )

= x2 - 9 + 8x2 + 8x + 2

= 9x2 + 8x - 7

= 9x2 + 8x + 16/9 - 79/9

= ( 3x + 4/3 )2 - 79/9

\(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)

Dấu " = " xảy ra <=> 3x + 4/3 = 0 => x = -4/9

=> GTNN của biểu thức = -79/9 <=> x =  -4/9

Khách vãng lai đã xóa
ᴗ네일 히트 야옹 k98ᴗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 6 2023 lúc 23:07

1: A=(x-1)^2>=0

Dấu = xảy ra khi x=1

5: B=-(x^2+6x+10)

=-(x^2+6x+9+1)

=-(x+3)^2-1<=-1

Dấu = xảy ra khi x=-3

2: B=x^2+4x+4-9

=(x+2)^2-9>=-9

Dấu = xảy ra khi x=-2

6: =-(x^2-5x-3)

=-(x^2-5x+25/4-37/4)

=-(x-5/2)^2+37/4<=37/4

Dấu = xảy ra khi x=5/2

3: =x^2+x+1/4-1/4

=(x+1/2)^2-1/4>=-1/4
Dấu = xảy ra khi x=-1/2

7: =4x^2+4x+1-2

=(2x+1)^2-2>=-2

Dấu = xảy ra khi x=-1/2

Nguyễn Quốc Khánh
Xem chi tiết