Tung độ giao điểm của đồ thị hai hàm số y=8-3x và y=x+2 là?
Tung độ giao điểm của hai đồ thị hàm số y = 3 x và y=11-x là
A.11
B. 3
C. 9
D. 2
Tung độ giao điểm của hai đồ thị hàm số y = 3 x và y = 11 - x là
A. 11
B. 3
C. 9
D. 2
tung độ giao điểm của đồ thị hàm số y=8-3x và y=x+2 là....( nhập kết quả giới dạng số thập phân )
giúp mình tí nha
x+2=8-3x
=> 8=x+2+3x=4x+2
=> 4x=8-2=6
=> x=6/4=1.5 nha bạn!
Tung độ giao điểm của đồ thị hàm số y = 2 x − 3 x + 3 và đường thẳng y = x − 1 là:
A. -3
B. 3.
C. -1
D. 0.
Đáp án C
PT hoành độ giao điểm là:
2 x − 3 x + 3 = x − 1 ⇔ x ≠ 1 2 x − 3 = x 2 + 2 x − 3 ⇔ x = 0 ⇒ y = − 1.
1) Vẽ đồ thị (d) của hàm số y = 2x – 3
2) Tìm tọa độ giao điểm của (d) và (d1) y = - 3x + 2 bằng phép tính.
3) Xác định các hệ số a và b của hàm số y = ax + b, biết rằng đồ thị (d2) của hàm số
này cắt trục tung tại điểm có tung độ là -2 và (d), (d1), (d2) đồng quy.
2: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-3=-3x+2\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Trên cùng một hệ trục tọa độ có hai đồ thị hàm số: (d1):y=-2x+5 và (d2):y=x+2
Biết hai đồ thị hàm số cắt nhau tại A. Tung độ giao điểm của hai đồ thị hàm số là
Cho hàm số y = 2x và y = -3x + 5
a) Vẽ trên cùng một hệ trục tọa độ, đồ thị hai hàm số trên?
b) Tìm tọa độ giao điểm M của hai đồ thị bằng phương pháp đại số. Gọi A, B lần lượt là giao điểm của đường thẳng y = -3x + 5 với trục hoành và trục tung. Tính diện tích tam giác OAB và diện tích tam giác OMA.
Bài 1 : Cho hàm số bậc nhất y=(2m-1)x +3m
a. Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2
b. Tìm m để đô thị hàm số song song với đường thẳng y = x-1
c. Tìm m để đồ thị hàm số đi qua giao điểm của 2 đường thẳng sau : y= 3x+2-4
d. Tìm m để đô thị hàm số cắt đường thẳng y= 2x+1 tại điểm có hoành độ là -4
e. Tìm m để đô thị hàm số cắt đường thẳng y=3x-5 tại điểm có tung độ là 2
Cho hàm số y=(m-1)x+m
a) Xác định m để đồ thij hàm số cắt trục tung điểm có tung độ bằng 3, cắt trục hoành tại điểm có tung độ bằng 3
b) Vẽ đồ thị hàm số của hai hàm số ứng với m tìm được câu a
c) Gọi giao điểm của 2 đồ thị với trục hoành lần lượt là A; B giao điiểm của hai đồ thị là C. Tính chu vi và diện tích của tam giác ABC
Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả.
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1).
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2.
Giao điểm của hai đường tiệm cận là I(1; 2).
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)²
m = 1/(x - 1)²
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là
m' = dy/dx = -1/(x - 1)²
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là
mm' = -1
-1/(x - 1)^4 = -1
(x - 1)^4 = 1
(x - 1)² = 1
x - 1 = ±1
x = 0 hay x = 2
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)
2, Giao điểm của hai đường tiệm cận là I(1; 2).
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)²
m = 1/(x - 1)²
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là
m' = dy/dx = -1/(x - 1)²
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là
mm' = -1
-1/(x - 1)^4 = -1
(x - 1)^4 = 1
(x - 1)² = 1
x - 1 = ±1
x = 0 hay x = 2
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)