Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi tinh
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 11 2022 lúc 22:25

a) Ta có: AB//CD(gt)

mà E∈AB và F∈CD

nên AE//DF và EB//FC

Xét tứ giác AEFD có AE//DF(cmt)

nên AEFD là hình thang có hai đáy là AE và DF(Định nghĩa hình thang)

Hình thang AEFD(AE//DF) có 

O là trung điểm của EF(gt)

OM//AE//DF(MN//AB//DC, E∈AB, O∈MN, F∈DC)

Do đó: M là trung điểm của AD(Định lí 3 về đường trung bình của hình thang)

Xét tứ giác BEFC có BE//FC(cmt)

nên BEFC là hình thang có hai đáy là BE và FC(Định nghĩa hình thang)

Hình thang BEFC(BE//FC) có 

O là trung điểm của EF(gt)

ON//EB//FC(MN//AB//DC, E∈AB, O∈MN, F∈CD)

Do đó: N là trung điểm của BC(Định lí 3 về đường trung bình của hình thang)

Xét ΔABD có 

M là trung điểm của AD(cmt)

E là trung điểm của AB(gt)

Do đó: ME là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒ME//BD và NF=BD2NF=BD2(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ME//NF và ME=NF

Xét tứ giác EMFN có ME//NF(cmt) và ME=NF(cmt)

nên EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét ΔBAC có 

E là trung điểm của AB(gt)

N là trung điểm của BC(cmt)

Do đó: EN là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)

⇒EN//AC và EM=BD2EM=BD2(cmt) và 

Nguyễn Trần Lam Trúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 8 2021 lúc 20:57

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{ODC}=\widehat{OCD}\)

Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)

nên ΔCOD cân tại O

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 8 2018 lúc 5:05

Hình thang ABCD là hình thang cân có hai góc kề một đáy đều bằng 45 0 thì MNPQ là hình vuông.

Tân Nhật
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2021 lúc 0:44

Xét ΔACD và ΔBDC có 

AC=BD

AD=BC

CD chung

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ODC}=\widehat{OCD}\)

hay OC=OD

Duy Đạt Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 10:02

a: Xét ΔAOB và ΔCOD có

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔAOB\(\sim\)ΔCOD

Suy ra: OA/OC=OB/OD

hay \(OA\cdot OD=OB\cdot OC\)

b: Xét ΔADC có MO//DC

nên MO/DC=AM/AD(1)

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC(2)

Xét hình thang ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)

Từ (1), (2) và (3) suy ra OM=ON

hay O là trung điểm của MN

Pham Thanh Thuy
Xem chi tiết
Nguyễn Thị BÍch Hậu
19 tháng 6 2015 lúc 14:58

a)  XÉT HÌNH THANG AEDF(AE//DF) O LÀ TRUNG ĐIỂM EF, OM//DF=> M PHẢI LÀ TĐ CỦA AD

TƯƠNG TỰ C/M N LÀ TĐ BC

ĐẾN ĐÂY LÀM GIỐNG BÀI HÔM TRC ĐÓ E. KẺ 2 ĐƯỜNG CHÉO AC,DB

TAM GIÁC ADB: E,M LÀ TRUNG ĐIỂM 2 CẠNH BÊN => EM LÀ ĐTB => EM//DB. TƯƠNG TỰ VỚI TAM GIÁC DBC:... => FN//DB

=> EM//FN.

TƯƠNG TỰ C/M: EN//MF => TỨ GIÁC EMFN LÀ HÌNH BÌNH HÀNH

B) EMFN LÀ HÌNH THOI <=> EM=EN. MÀ EM=1/2 DB; EN=1/2 AC => AC=DB => HÌNH THANG ABCD CÂN

C) EMFN LÀ HÌNH VUÔNG <=> EMFN LÀ HÌNH THOI (ĐK CÂU B) VÀ EM VUÔNG GÓC EN TẠI E. MÀ EM//DB, EN//AC => DB VUÔNG GÓC AC

=> ABCD là hình thang cân và có 2 đường chéo vuông góc

Nguyễn Thị BÍch Hậu
19 tháng 6 2015 lúc 15:01

lần sau kẻ hình nha

➻❥ɴт_тнủʏ︵²⁰⁰⁴
2 tháng 10 2017 lúc 13:25

123 + 345 = 468

468 + 567 = 1035

1035 - 236 = 799

799 - 189 = 610

610 + 853 = 1463

Cao Thanh Nga
Xem chi tiết
Phương Nguyễn
Xem chi tiết
nguyễn thị kim oanh
10 tháng 2 2016 lúc 0:03

a / hình bình hành 

b/ AC=BD ; AB>CD ; AB<AC<CD;AB<BD<CD

c/hình vuông

OoO Kún Chảnh OoO
10 tháng 2 2016 lúc 6:34

(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD  (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD                                 (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC                                                        (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN 
=> MNPQ là hình thoi

 

ST
10 tháng 2 2016 lúc 6:43

Do AI, DI lần lượt là phân giác BADˆ;ADCˆ→IADˆ=BADˆ2 và IDAˆ=ADCˆ2

Ta có AIDˆ=180o−(IADˆ+IDAˆ)=180oBADˆ+ADCˆ2=180o−180o2=90o

Xét Δ AID vuông tại I có IM là trung tuyến thuộc cạnh huyền AD  MA=MI 

=> Δ AMI cân tại M => MAIˆ=MIAˆ

Do MAIˆ=BAIˆ→BAIˆ=MIAˆ

Mà 2 góc ở vị trí so le trong  MI // AB (1)

Tương tự có NJ // AB (2) 

Lại có MN // AB (3) ( MN là đường trung bình của hình thang ABCD ) 

Từ (1); (2) và (3)=>  M, N, I, J thẳng hàng.