Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Unknow
Xem chi tiết
Lê Song Phương
9 tháng 8 2023 lúc 21:31

Đặt \(3p+4=k^2\left(k\ge4\right)\)

\(\Leftrightarrow k^2-4=3p\)

\(\Leftrightarrow\left(k-2\right)\left(k+2\right)=3p\)

Ta thấy \(0< k-2< k+2\) nên có 2TH:

TH1: \(\left\{{}\begin{matrix}k-2=1\\k+2=3p\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=3\\3p=5\end{matrix}\right.\), vô lí.

TH2: \(\left\{{}\begin{matrix}k-2=3\\k+2=p\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=5\\p=7\end{matrix}\right.\), thỏa mãn.

Vậy \(p=7\) là số nguyên tố duy nhất thỏa ycbt.

Nguyễn Quang Kỳ
Xem chi tiết
Kẻ Bí Mật
Xem chi tiết
Uchiha Sakura
Xem chi tiết
Bánh Bao Nhân Thịt
Xem chi tiết
Vân Lê
Xem chi tiết
Gallavich
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 3 2021 lúc 17:21

1. 

\(p=2\Rightarrow p+6=8\) ko phải SNT (ktm)

\(\Rightarrow p>2\Rightarrow p\) lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p^2+2021\) luôn là 1 số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số

2.

\(a^2+3a=k^2\Rightarrow4a^2+12a=4k^2\)

\(\Rightarrow4a^2+12a+9=4k^2+9\Rightarrow\left(2a+3\right)^2=\left(2k\right)^2+9\)

\(\Rightarrow\left(2a+3-2k\right)\left(2a+3+2k\right)=9\)

\(\Leftrightarrow...\)

Minh Khang Dao
Xem chi tiết
TrịnhAnhKiệt
Xem chi tiết