Chứng minh rằng : \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2010}\)
CMR: \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2000}\)
Đặt 2011 = a ; 11 = b ; 2000 = c
\(\Rightarrow a=b+c\)
Xét vế phải của đẳng thức ta có: \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}\)
Thay \(a=b+c\)vào \(a^2-ab+b^2=\left(b+c\right)^2-\left(b+c\right).b+b^2=b^2+bc+c^2\)
Thay \(a=b+c\)vào \(a^2-ac+c^2=\left(b+c\right)^2-\left(b+c\right).c+c^2=b^2+bc+c^2\)
\(\Rightarrow\)\(a^2-ab+b^2=a^2-ac+c^2\)
\(\Rightarrow\) \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}=\frac{a+b}{a+c}=\frac{2011+11}{2011+2000}\)
Vậy \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2000}\left(đpcm\right)\)
cm
2011^3+11^3/2011^3+2000^3=2011+11/2011+2000
cho 2011 số tự nhiên thõa mãn điều kiện
\(\frac{1}{x_1^{11}}+\frac{1}{x_2^{11}}+\frac{1}{x_3^{11}}+...+\frac{1}{x_{2011}^{11}}=\frac{2011}{2048}\)
tính tổng \(M=\frac{1}{x_1^1}+\frac{1}{x_2^2}+\frac{1}{x_3^3}+...+\frac{1}{x_{2011}^{2011}}\)
Gọi i là đại diện cho các số từ 1 đến 2011
ĐKXĐ: \(a_i\ne0\left(i=1,2,3,..,2011\right)\)
Xét \(a_i=1\) Ta có: \(\frac{1}{a^{11}_i}=1>\frac{2011}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}>\frac{2011}{2048}\left(loai\right)\)
Xét \(a_i\ge2\) Ta có: \(\frac{1}{a^{11}_i}\le\frac{1}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}\le\frac{2011}{2048}\)
Dấu "=" xảy ra khi \(a_i=2\)
Thay vào ta có:
\(M=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\)
\(\Rightarrow2M-M=\left(1+\frac{1}{2}+...+\frac{1}{2^{2010}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)\)
\(\Rightarrow M=1-\frac{1}{2^{2011}}\)
Chứng minh rằng:\(\left(2011+2011^2+2011^3+...........+2011^{2010}\right)\)) chia hết cho 503
Chứng minh rằng: A= 2010/2011+2011/2012+2012/2010 > 3
Lời giải:
$A=1-\frac{1}{2011}+1-\frac{1}{2012}+1+\frac{2}{2010}$
$=3+(\frac{1}{2010}-\frac{1}{2011})+(\frac{1}{2010}-\frac{1}{2012})$
$> 3+0+0+0=3$
Ta có đpcm.
Tính
a)\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+....\frac{1}{2011}}\)
b)\(\frac{0.375-0.3+\frac{3}{11}+\frac{3}{12}}{-0.265+0.5-\frac{5}{11}-\frac{5}{12}}+\frac{1.5+1-0.75}{2.5+\frac{5}{3}-1.25}\)
cho 2011 số tự nhiên x1,x2,x3,....,x2011 thỏa mãn điều kiện
\(\frac{1}{^{x^{11}}_1}+\frac{1}{_2x^{11}}+.....+\frac{1}{_{2011}x^{11}}=\frac{2011}{2048}\) tính tổng
\(\frac{1}{_1x^1}+\frac{1}{_2x^2}+....+\frac{1}{_{2011}x^{2011}}\)
Tìm số hữu tỉ x biết:
a) \(\frac{x+4}{2009}+\frac{x+3}{2010}=\frac{x+2}{2011}+\frac{x+1}{2012}\)
b) \(\frac{x-2011}{2010}+\frac{x-2011}{2011}+\frac{x-2011}{2012}=\frac{x-2011}{2013}+\frac{x-2011}{2014}\)
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)
So sánh P và Q biết : P = 2010/2011 + 2011/2012 + 2012/2013 và Q = 2010+2011+2012/ 2011 +2012+2013
Chứng tỏ N < 1 với N = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}