Cho k số bằng 2p+3 và p số =5-k(k,p\(\in\)N) . Toỏng tất cả các số đó bằng 4 lần k+p. CMR :k=p
Cho k số bằng 2p+3 và p bằng 5-2k ( k và p là hai số tự nhiên ). Tổng tất cả các số đó bằng 4 lần k+p.
chứng minh rằng k=p
tìm tất cả các bộ (n,k,p), với n,k là các số nguyên lớn hơn 1 và p là 1 số nguyên tố thỏa mãn \(n^5+n^4-2n^3-2n^2+1=p^k\)
Ta có:
\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)
Từ gt \(\Rightarrow n,k\ge2\)
Ta có:
\(\left\{{}\begin{matrix}n^3-n-1>1;n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n^3-n-1=p^r\\n^2+n-1=p^s\end{matrix}\right.\) trong đó \(\left\{{}\begin{matrix}r\ge s>0\\r+s=k\end{matrix}\right.\)
\(\Rightarrow n^3-n-1⋮n^2+n-1\)
\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)
\(\Rightarrow n-2⋮n^2+n-1\) (1)
Mặt khác:
\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)
\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\) (2)
Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\left\{{}\begin{matrix}p=5\\k=2\end{matrix}\right.\)
Vậy bộ số (n,k,p)=(2,2,5)
\(...\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\).
Do đó \(\left\{{}\begin{matrix}n^2+n-1=p^v\\n^3-n-1=p^u\end{matrix}\right.\left(v,u\in N;v+u=k\right)\).
+) Với n = 2 ta có \(p^k=25=5^2\Leftrightarrow p=5;k=2\)
+) Với n > 2 ta có \(n^3-n-1>n^2+n-1\Rightarrow v>u\Rightarrow n^3-n-1⋮n^2+n-1\)
\(\Rightarrow\left(n^2+n-1\right)\left(n-1\right)+n-2⋮n^2+n-1\)
\(\Rightarrow n-2⋮n^2+n-1\)
\(\Rightarrow\left(n-2\right)\left(n+3\right)⋮n^2+n-1\)
\(\Rightarrow6⋮n^2+n-1\).
Không tồn tại n > 2 thoả mãn
Vậy...
CMR:
a) Nếu b là số nguyên tố khác 3 thì A=3n+2+2014b2 là hợp số với mọi số tự nhiên n
b) Nếu p và 8p2+1 là các số nguyên tố thì 8p2+2p+1 là số nguyên tố
c) Nếu k là số tự nhiên lớn hơn 1 thỏa mãn k2+4 và k2+16 là các số nguyên tố thì k chia hết cho 5
tìm tất cả các bộ (n,k,p), với n,k là các số nguyên lớn hơn 1 và p là 1 số nguyên tố thỏa mãn \(n^5+n^4-2n^3-2n^2+1=p^k\)
Ta có:
\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)
Từ giả thiết \(\Rightarrow n,k\ge2\)
Ta có:
\(\hept{\begin{cases}n^3-n-1>1,n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}n^3-n-1=p^r\\n^2+n-1=p^s\end{cases}}\) trong đó \(\hept{\begin{cases}r\ge s\ge0\\r+s=k\end{cases}}\)
\(\Rightarrow n^3-n-1⋮n^2+n-1\)
\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)
\(\Rightarrow n-2⋮n^2+n-1\) (1)
Mặt khác :
\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)
\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\) (2)
Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\hept{\begin{cases}p=5\\k=2\end{cases}}\)
Vậy bộ số cần tìm là (n,k,p)=(2,2,5)
in ra tất cả các số nguyên tố đối xứng có k chữ số, với k được nhập từ bàn phím (1<=k<=9)
Vd: k=3
101,131,151,181,191,313,...
Làm bằng pascal nha mn giúp mình
program abcdef;
uses Crt;
var
k, lowerLimit, upperLimit, i, j, reversed, temp, remainder: integer;
isPrime, isPalindrome: boolean;
begin
clrscr;
write('Nhap so chu so k (1<=k<=9): ');
readln(k);
lowerLimit := 1;
for i := 1 to k - 1 do
lowerLimit := lowerLimit * 10;
upperLimit := lowerLimit * 10 - 1;
writeln('Cac so nguyen to doi xung co ', k, ' chu so la:');
for i := lowerLimit to upperLimit do
begin
// Kiểm tra số nguyên tố
isPrime := True;
if i < 2 then
isPrime := False
else
for j := 2 to trunc(sqrt(i)) do
if i mod j = 0 then
beginisPrime := False;break;end;
// Kiểm tra số đối xứng
if isPrime then
begin
reversed := 0;
temp := i;
while temp <> 0 dobeginremainder := temp mod 10;
reversed := reversed * 10 + remainder;
temp := temp div 10;
end;
isPalindrome := (i = reversed);
if isPalindrome then
writeln(i);
end;
end;
readln;
end.
giả sử k là một bộ số gồm 10 số (ko nhất thiết phải khác nhau),sao cho mỗi số trong k đều bằng tổng bình phươngcủa tất cả chín số còn lại.hãy tìm tất cả các bộ số k như vậy
Cho S= 1.2.3 + 2.3.4 + 3.4.5 + ... + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương.
Cho e hỏi là vì sao khi :
S.4=1.2.3.4+2.3.4.4+...+k(k+1)(k+1).4
=1.2.3(4-0)+2.3.4.(5-1)+...+k(k+1)(k+2)(k+3-k-1)
Tới đoạn này thì S lại bằng:
=1.2.3.4-0+1.2.3.4-2.3.4.5+...+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
Và sau đó chỉ còn: =(k-1)k(k+1)(k+2)
MONG CÁC BẠN, CÁC THẦY CÔ GIẢI ĐÁP GIÚP MÌNH!!!
1. tìm số lớn nhất có 3 chữ số mà khi chia số đó cho 65 ta được thương và số dư bằng nhau
2. tìm số tự nhiên n sao cho 4 - n chia hết cho n+1
3. tìm số tự nhiên k sao cho 7-k chia hết cho k-2
câu 1:ta có số 975 chia hết cho 65 và lớn nhất
ta có:975/65=15
lại có thương=số dư suy ra số dư =15
suy ra số cần tìm là 975+15=990
Vậy số cần tìm là 990
câu 2 =4
câu 3 = 3
tick đi mình cho lời giải chi tiết
1)tìm tất cả các nghiệm cửa đa thức P(x)=x^4+2x^3+4x^2-2x-5
2)Cho S=k^2+k+1 .
a)Cmr S không chia hết cho 9
b)Nếu k là số nguyên dương thì Gtri của S có thể là số chính phương ko? Vì sao?