Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Minh Anh
Xem chi tiết
trí ngu ngốc
11 tháng 11 2021 lúc 18:22
trí ngu ngốc
19 tháng 12 2021 lúc 9:38

Đề sai nghe

trí ngu ngốc
19 tháng 12 2021 lúc 19:01

kết hợp theo công thức thì số kết thúc phải là 219 hoặc là 221  mới kết hợp được
Đừng có đánh giá người khác như thế chứ ;-;

Tư Linh
Xem chi tiết
Phía sau một cô gái
28 tháng 7 2021 lúc 22:20

220 ≡ 1 ( mod 3 ) ⇒ \(220^{119^{69}}\) ≡ 1 ( mod 3 )

119 ≡  −1 ( mod 3 ) ⇒ \(119^{69^{220}}\) ≡ −1( mod 3 )

69 ≡ 0 ( mod 3 ) ⇒ \(69^{220^{119}}\) ≡ 0 ( mod 3 )
Do đó A ⋮ 3 ( dư 1 )
Tương tự ta có:
220 ≡ −1( mod 17 ) ⇒ \(220^{119^{69}}\) ≡ -1 ( mod 17 )

119 ≡ 0 ( mod 17 ) ⇒ \(119^{69^{220}}\) ≡ 0 ( mod 17 )

69 ≡ 1 ( mod 17 ) ⇒ \(69^{220^{119}}\) ≡ 1 ( mod 17 )

Suy ra A ⋮ 17 (2)

Lại có A là số chẵn (Vì \(69^{220^{119}}\)\(119^{69^{220}}\) là số lẻ, \(220^{119^{69}}\) là số chẵn)

Suy ra: A ⋮ 2 (3)

Vì 2, 3, 17 nguyên tố cùng nhau nên từ (1), (2), (3) suy ra: A ⋮ 2.3.17 hay A ⋮ 102

Đặng Kiều Trang
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
13 tháng 8 2015 lúc 10:33

220 đồng dư với 2(mod 2)

=>\(220^{119^{69}}\)đồng dư với 0(mod 2)

119 đồng dư với 1(mod 2)

=>\(119^{69^{220}}\)đồng dư với 1(mod 2)

69 đồng dư với 1(mod 2)

=>\(69^{220^{119}}\)đồng dư với 1(mod 2)

=>\(220^{119^{60}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 2

220 đồng dư với 1(mod 3)

=>\(220^{119^{69}}\)đồng dư với 1(mod 3)

119 đồng dư với -1(mod 3)

=>\(119^{69^{220}}\)đồng dư với -1(mod 3)

69 đồng dư với 0(mod 3)

=>\(69^{220^{119}}\)đồng dư với 0(mod 3)

=>\(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 3

220 đồng dư với -1(mod 17)

=>\(220^{119^{69}}\)đồng dư với -1(mod 17)

119 đồng dư với 0(mod 17)

=>\(119^{69^{220}}\)đồng dư với 0(mod 17)

69 đồng dư với 1(mod 17)

=>\(69^{220^{119}}\)đồng dư với 1(mod 17)

=>\(220^{119^{69}}+119^{220^{69}}+69^{220^{119}}\)chia hết cho 17

vì (2;3;17)=1=>\(220^{119^{69}}+119^{220^{69}}+69^{220^{119}}\)chia hết cho 102

=>đpcm

Nguyễn Ngọc Quý
Xem chi tiết
Cẩm Duyên
12 tháng 12 2015 lúc 11:29

Vào câu hỏi tương tự nha bạn 

tranthithao tran
Xem chi tiết
tran vu quang anh
Xem chi tiết
Sai
12 tháng 6 2015 lúc 12:04

Gợi ý:(Làm ra dài lắm! Mình gợi ý cho bạn thôi!^^)

Sử dụng phương pháp đồng dư thức:

102=2.3.17 với ƯCLN(2,3,17)=1.

Chứng minh từng lũy thừa tầng chia hết cho 2,3,17.

=> Các lũy thừa tầng cộng lại chia hết cho 2.3.17=102.

 

 

 

Time Lord
Xem chi tiết
Time Lord
Xem chi tiết
Nguyen tien dung
Xem chi tiết
Ly Y Lan
Xem chi tiết
Nguyễn Quốc Khánh
31 tháng 12 2015 lúc 22:26

Giả sử A chia hết cho 102

=>A chia hết cho 3(*)

Nhưng 220 chia 3 dư 1

=>\(220^{11969}\) chia 3 dư 1(1)

119 chia 3 dư 2

=>\(119^2\)chia 3 dư 1

=>\(\left(119^2\right)^{34610}\) chia 3 dư 1(2)

69 chia hết cho 3

=>69^220119 cũng chia hết cho 3(3)

Từ (1),(2)và (3)

=>A chia 3 dư 2

Mâu thuẫn với (*)

=>SAI ĐỀ bạn à

Nếu thấy bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.

Ly Y Lan
3 tháng 1 2016 lúc 16:35

ủa??? Mình xem lời giải thấy đúng mà bạn. Sử dụng mod casio ý.

mac tien dung
19 tháng 8 2016 lúc 20:30

mod casio là gì vậy bạn