chứng minh
a=220-217 mà chia hết cho 7
b=20657 mà ___________ 69
Chứng minh
A = 1 + 2 + 22 + 23 + 24 +…+ 219 + 220.chứng tỏ rằng A chia hết cho 3
kết hợp theo công thức thì số kết thúc phải là 219 hoặc là 221 mới kết hợp được
Đừng có đánh giá người khác như thế chứ ;-;
đồng dư thức: chứng minh
220^119^69 +119^69^220 +69^ 220^19 chia hết cho 102
giúp mình với, cảm ơn mọi người
220 ≡ 1 ( mod 3 ) ⇒ \(220^{119^{69}}\) ≡ 1 ( mod 3 )
119 ≡ −1 ( mod 3 ) ⇒ \(119^{69^{220}}\) ≡ −1( mod 3 )
69 ≡ 0 ( mod 3 ) ⇒ \(69^{220^{119}}\) ≡ 0 ( mod 3 )
Do đó A ⋮ 3 ( dư 1 )
Tương tự ta có:
220 ≡ −1( mod 17 ) ⇒ \(220^{119^{69}}\) ≡ -1 ( mod 17 )
119 ≡ 0 ( mod 17 ) ⇒ \(119^{69^{220}}\) ≡ 0 ( mod 17 )
69 ≡ 1 ( mod 17 ) ⇒ \(69^{220^{119}}\) ≡ 1 ( mod 17 )
Suy ra A ⋮ 17 (2)
Lại có A là số chẵn (Vì \(69^{220^{119}}\), \(119^{69^{220}}\) là số lẻ, \(220^{119^{69}}\) là số chẵn)
Suy ra: A ⋮ 2 (3)
Vì 2, 3, 17 nguyên tố cùng nhau nên từ (1), (2), (3) suy ra: A ⋮ 2.3.17 hay A ⋮ 102
chứng minh rằng : \(A=220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\) chia hết cho 102
220 đồng dư với 2(mod 2)
=>\(220^{119^{69}}\)đồng dư với 0(mod 2)
119 đồng dư với 1(mod 2)
=>\(119^{69^{220}}\)đồng dư với 1(mod 2)
69 đồng dư với 1(mod 2)
=>\(69^{220^{119}}\)đồng dư với 1(mod 2)
=>\(220^{119^{60}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 2
220 đồng dư với 1(mod 3)
=>\(220^{119^{69}}\)đồng dư với 1(mod 3)
119 đồng dư với -1(mod 3)
=>\(119^{69^{220}}\)đồng dư với -1(mod 3)
69 đồng dư với 0(mod 3)
=>\(69^{220^{119}}\)đồng dư với 0(mod 3)
=>\(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 3
220 đồng dư với -1(mod 17)
=>\(220^{119^{69}}\)đồng dư với -1(mod 17)
119 đồng dư với 0(mod 17)
=>\(119^{69^{220}}\)đồng dư với 0(mod 17)
69 đồng dư với 1(mod 17)
=>\(69^{220^{119}}\)đồng dư với 1(mod 17)
=>\(220^{119^{69}}+119^{220^{69}}+69^{220^{119}}\)chia hết cho 17
vì (2;3;17)=1=>\(220^{119^{69}}+119^{220^{69}}+69^{220^{119}}\)chia hết cho 102
=>đpcm
Chứng minh rằng:
A = \(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 102
chứng minh rằng A= 220^11969+119^69220+69^220119 chia hết cho 102
C/M : \(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 102
Gợi ý:(Làm ra dài lắm! Mình gợi ý cho bạn thôi!^^)
Sử dụng phương pháp đồng dư thức:
102=2.3.17 với ƯCLN(2,3,17)=1.
Chứng minh từng lũy thừa tầng chia hết cho 2,3,17.
=> Các lũy thừa tầng cộng lại chia hết cho 2.3.17=102.
cmr: \(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 102
cmr \(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\) chia hết cho 102
\(CMR:A=\left(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\right)\)chia hết cho 102
A = 220^11969 + 119^69220 + 69^220119
Chứng minh A chia hết cho 102
Giả sử A chia hết cho 102
=>A chia hết cho 3(*)
Nhưng 220 chia 3 dư 1
=>\(220^{11969}\) chia 3 dư 1(1)
119 chia 3 dư 2
=>\(119^2\)chia 3 dư 1
=>\(\left(119^2\right)^{34610}\) chia 3 dư 1(2)
69 chia hết cho 3
=>69^220119 cũng chia hết cho 3(3)
Từ (1),(2)và (3)
=>A chia 3 dư 2
Mâu thuẫn với (*)
=>SAI ĐỀ bạn à
Nếu thấy bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.
ủa??? Mình xem lời giải thấy đúng mà bạn. Sử dụng mod casio ý.