Cho tam giác ABC vuông tại B< phân giác AD
a, So sánh góc ADB và góc ADC
b, Trên tia AC lấy điểm H sao cho AH = AB. Chứng minh rằng DH vuông góc AC
c, Hạ CK vuông góc với AD. Chứng minh rằng AB, DH, CK đồng quy
Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt cạnh BC tại H. Lấy điểm D bất kì trên AH. Chứng minh :
a) Tam giác ADB = tam giác ADC
b) DH là tia phân giác của góc BDC
c) AH vuông góc với BC
a: Xét ΔADB và ΔADC có
AD chung
góc BAD=góc CAD
AB=AC
=>ΔABD=ΔACD
b: Xét ΔDHB và ΔDHC có
DH chung
HB=HC
DB=DC
=>ΔDHB=ΔDHC
=>góc BDH=góc CDH
=>DH là phân giác của góc BDC
c: ΔABC cân tại A
mà AH là phân giác
nên AH vuông góc CB
Cho tam giác ABC có góc B › góc C. Từ A kẻ đường thẳng vuông góc với BC, ( H thuộc BC )
a, Chứng minh rằng HB ‹ HC
b, Gọi AD là tia phân giác của góc HAC. Trên cạnh AC lấy điểm E sao cho AE = AH. Chứng minh DH = DE
c, Gọi K là giao điểm của ED và AH. Chứng minh AD vuông góc với CK
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. Từ D kẻ DH vuông góc BC tại H
a, Chứng minh rằng AB=BH
b, So sánh AD và DC
c, BD vuông góc tới AH
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
b: ta có: ΔBAD=ΔBHD
nên DA=DH
mà DH<DC
nên DA<DC
c: Ta có: BA=BH
DA=DH
Do đó: BD là đường trung trực của AH
hay BD⊥AH
Cho tam giác ABC vuông tại A.Trên tia đối của tia AB lấy D sao cho AB = AD . Kẻ AH vuông góc với DC tại H, AK vuông góc với BC tại K. Biết rằng tam giác CBD cân và DH=BK. chứng minh AC^2 + DH^2 = AD^2+HC^2
Áp dụng định lí pitago cho tam giác ADH vuông tại H và tam giác HAC vuông tại H
=> AH2 = AD2- DH2 và AH2 = AC2 - HC2
=> AD2 - DH2 = AC2 - HC2
=> AD2 + HC2 = AC2 + DH2
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.
a) Chứng minh: tam giác ABC = tam giác EBD và AD = ED
b) Chứng minh: AH // DE
c) Trên tia DE lấy điểm K sao cho DK = AH. Gọi M là trung điểm của đoạn thẳng DH. Chứng minh rằng: A, M, K thẳng hàng
cho tam giac ABC vuông tại A và góc C< góc B. Vẽ AH vuông góc BC. Trên tia BH lấy điểm D sao cho HD=HB. kẻ DI cuông góc AC và CK vuông góc AD. chứng minh: AB=AD. CB là tia phân giác của góc ACK. AH, DI, CK đồng quy
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cách AC tại D. Từ D kẻ DH vuông góc với BC (H€BC) và DH cách AB tại K a) Chứng minh AD =DH b) So sánh độ dài cạnh AD và BC c) Chứng minh tam giác KBC là tam giác cân
Cho tam giác ABC nhọn ( AB > AC ) có đường phân giác AD. Kẻ BH vuông góc với AD tại H, CK vuông góc với AD tại K.
a) Chứng minh tam giác BHD đồng dạng tam giác CKD
b) Chứng minh AB.AK=AC.AH
c) Chứng minh DH/DK=BH/CK=AB/AC
Cho tam giác ABC vuông tại A (AB < AC). Vẽ AD là tia phân giác của góc BAC (D thuộc BC). Trên đoạn AC lấy điểm H sao cho AH = AB. a) Chứng minh góc ADH = góc ADB b) Tia HD cắt AB tại E. Chứng minh : tam giác AHE = tam giác ABC và AD ^ EC c) Gọi G là trung điểm của ED. Tia AD cắt CG tại X. Chứng minh 3.DX < 2.DC
a) Xét tam giác ABD và tam giác AHD có:
AB = AH ( gt )
^BAD = ^CAD ( Do AD phân giác )
AD chung
=> Tam giác ABD = tam giác AHD ( c.g.c )
=> ^ABD = ^AHB ( hai góc tương ứng )
b) Xét tam giác AHE và tam giác ABC có:
AB = AH ( gt )
^ABC chung
^ABD = ^AHD ( cmt )
=> Tam giác AHE = tam giác ABC ( g.c.g )