cho q= 3/(1!+2!+3!) + 4/(2!+3!+4!) +.....+100/(98!+99!+100!) với n!=1.2.3...n. so sánh q với 1/2
Cho n!=1.2.3....n,đọc là n giai thừa.Chứng minh rằng:
a.\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{99}{100!}< \)\(1\)
b.\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+....+\frac{99.100-1}{100!}< 2\)
Cho biểu thức T=\(\frac{1^3}{2^2}\)+\(\frac{2^3}{3^2}\)+...+\(\frac{98^3}{99^2}\)+\(\frac{99^3}{100^2}\)
So sánh T với 4444
so sánh M= 1/2*3/4*5/6*...*99/100 với N=2/3
so sánh biểu thức P với \(\frac{1}{2}\)biết
\(P=\frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+...+\frac{2017}{2015!+2016!+2017!}\)(với n!=1.2.3...n)
\(P=\frac{3}{1!\left(1+2\right)+3!}+\frac{4}{2!\left(1+3\right)+4!}+...+\frac{2017}{2015!\left(1+2016\right)+2017!}\)
\(P=\frac{3}{3\left(1!+2!\right)}+\frac{4}{4\left(2!+3!\right)}+...+\frac{2017}{2017\left(2015!+2016!\right)}\)
\(P=\frac{1}{1!+2!}+\frac{1}{2!+3!}+...+\frac{1}{2015!+2016!}\)
Ta có \(a!>\sqrt{a}\)\(\left(a\inℕ;a>1\right)\) do đó :
\(P>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2015}+\sqrt{2016}}\)
\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\)
\(\frac{\sqrt{2016}-\sqrt{2015}}{\left(\sqrt{2016}+\sqrt{2015}\right)\left(\sqrt{2016}-\sqrt{2015}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2016}\)
\(-\sqrt{2015}=\sqrt{2016}-1=\frac{1}{2}+\left(\sqrt{2016}-\frac{3}{2}\right)=\frac{1}{2}+\left(\sqrt{2016}-\sqrt{\frac{9}{4}}\right)>\frac{1}{2}\)
Vậy \(P>\frac{1}{2}\)
Chúc bạn học tốt ~
PS : tự nghĩ bừa thui nhé :))
So sánh:
a) G=10^100+2/10^100-1 và H=10^8/10^8-3
b) E=98^99+1/98^89+1 và F=98^98/98^88+1
c) 5/3 và 5+m/3+m với m thuộc N*
Tính
1) S=1-2+3-4+......+99-100
2) P=2-4+6-8+........+98-100
3) Q=(-1)+2+(-3)+.......+(-99)+100
Cho
\(S=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^{ }3}-\frac{4}{3^{ }4}+...+\frac{99}{3^{ }99}-\frac{100}{3^{ }100}\)
So sánh S và \(\frac{1}{5}\)
so sánh với 1
2.tính M=4/1*5+4/5*9+4/13*17+4/17*21
so sánh M với 1
3.so sánh Q với 1
Q=1/1*2+1/2*3+...+1/99*100
cho \(M=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\) và \(N=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
Tính tỉ số M với N