Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Nguyễn Hoài Trang
Xem chi tiết
Trọng Nguyễn
Xem chi tiết
Ngô Chi Lan
13 tháng 8 2020 lúc 14:35

Bài làm:

a) Ta có: \(A=\left|x-\frac{3}{4}\right|\ge0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x-\frac{3}{4}\right|=0\Rightarrow x=\frac{3}{4}\)

Vậy Min(A) = 0 khi x=3/4

b) Ta có: \(B=-\left|x+2020\right|\le0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|x+2020\right|=0\Rightarrow x=-2020\)

Vậy Max(B) = 0 khi x = -2020

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
13 tháng 8 2020 lúc 14:51

A = | x - 3/4 |

\(\left|x-\frac{3}{4}\right|\ge0\forall x\Rightarrow A\ge0\)

Dấu " = " xảy ra <=> x - 3/4 = 0 => x = 3/4

Vậy AMin = 0 , đạt được khi x = 3/4

B = - | x + 2020 |

\(\left|x+2020\right|\ge0\forall x\Rightarrow-\left|x+2020\right|\le0\forall x\)

\(\Rightarrow B\le0\)

Dấu " = " xảy ra <=> x + 2020 = 0 => x = -2020

Vậy BMax = 0, đạt được khi x = -2020

Khách vãng lai đã xóa
Cao Nguyễn Hoài Trang
Xem chi tiết
dghdgh
Xem chi tiết
afa2321
Xem chi tiết
Trên con đường thành côn...
12 tháng 7 2021 lúc 17:01

undefined

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 23:39

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

Nguyễn Thị Tố Quyên
Xem chi tiết
Hoàng Ninh
3 tháng 3 2019 lúc 7:15

\(\left(x+1\right).\left(x-2\right)>0\)

\(\Rightarrow\hept{\begin{cases}x+1>0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x>2\end{cases}\Rightarrow}x>2}\)

Vậy x > 2

Nguyệt
3 tháng 3 2019 lúc 7:26

thế \(\hept{\begin{cases}x+1< 0\\x-2< 0\end{cases}\Rightarrow x< -1}\)ko đc à??

Hoàng Ninh
3 tháng 3 2019 lúc 7:27

Bổ sung thêm 1 trường hợp nữa:

\(\hept{\begin{cases}x+1< 0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x< 2\end{cases}\Rightarrow}x< -1}\)

Vậy x < - 1

Goku bucu
Xem chi tiết
Edogawa Conan
5 tháng 8 2019 lúc 16:24

Ta có: A = x2 - 5x + 1 = (x2 - 5x + 25/4) - 21/4 = (x - 5/2)2 - 21/4

Ta luôn có: (x - 5/2)2 \(\ge\)\(\forall\)x

=> (x - 5/2)2 - 21/4 \(\ge\)-21/4 \(\forall\)x

Dấu "=" xảy ra <=> x -5/2 = 0 <=> x = 5/2

Vậy Min A = -21/4 tại  x = 5/2

Ta có: B = -x + 3x + 1 = -(x - 3x  + 9/4) + 13/4 = -(x - 3/2)2 + 13/4

Ta luôn có: -(x - 3/2)2 \(\le\)\(\forall\)x

=> -(x - 3/2)2 + 13/4 \(\le\)13/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x  = 3/2

Vậy Max B = 13/4 tại x = 3/2

(xem lại đề)

Anh Tuấn
Xem chi tiết
Nguyễn Phúc Hoàng
1 tháng 1 2017 lúc 9:46

GTLN:A=11

GTNN:B=2

CÒN GTLN CÂU B KO TIM ĐƯỢC

        GTNN CÂU A KO TÌM ĐƯỢC

bui duong khanh tung
Xem chi tiết