Những câu hỏi liên quan
๖ۣۜLuyri Vũ๖ۣۜ
Xem chi tiết
Trí Tiên亗
4 tháng 9 2020 lúc 15:14

Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức :

\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+c+a-b+a+b-c}\)

\(\Leftrightarrow\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge a+b+c\left(đpcm\right)\)

Bất đẳng thức được chứng minh 

Khách vãng lai đã xóa
Huyen Trang
4 tháng 9 2020 lúc 15:16

Áp dụng BĐT Bunhiacopxki dạng cộng mẫu:

\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+c+a-b+a+b-c}\)

\(=\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra khi: \(a=b=c\)

Khách vãng lai đã xóa
Trí Tiên亗
4 tháng 9 2020 lúc 15:17

Do \(a,b,c\) là độ dài ba cạnh tam giác , \(a,b,c>0\)

\(\Rightarrow\hept{\begin{cases}b+c-a>0\\c+a-b>0\\a+b-c>0\end{cases}}\)

Áp dụng BĐT AM - GM cho hai số dương ta có :

\(\frac{a^2}{b+c-a}+b+c-a\ge2\sqrt{\frac{a^2}{b+c-a}.\left(b+c-a\right)}=2a\)

\(\frac{b^2}{c+a-b}+c+a-b\ge2\sqrt{\frac{b^2}{c+a-b}.\left(c+a-b\right)}=2b\)

\(\frac{c^2}{a+b-c}+a+b-c\ge2\sqrt{\frac{a^2}{a+b-c}.\left(a+b-c\right)}=2c\)

Cộng vế với vế của các BĐT cùng chiều ở trên ta có :

\(\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}+a+b+c\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\ge a+b+c\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\).

Vậy BĐT được chứng minh !

Khách vãng lai đã xóa
Hoàng Tử Lớp Học
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
26 tháng 11 2020 lúc 19:25

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

Khách vãng lai đã xóa
nguyễn thị diệu linh
Xem chi tiết
Thanh Tùng DZ
27 tháng 5 2019 lúc 16:05

1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0

theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :

2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )

\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

Thanh Tùng DZ
27 tháng 5 2019 lúc 16:07

Ta có a + b > c, b + c > a, a + c > b

Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

vậy ...

zZz Cool Kid_new zZz
30 tháng 5 2019 lúc 20:15

Cách khác của câu 1.

Ta có:

\(\hept{\begin{cases}a\ge\left|b-c\right|\\b\ge\left|a-c\right|\\c\ge\left|a-b\right|\end{cases}}\Rightarrow\hept{\begin{cases}a\ge\left(b-c\right)^2\\b\ge\left(a-c\right)^2\\c\ge\left(a-b\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}a^2\ge a^2-\left(b-c\right)^2\left(1\right)\\b^2\ge b^2-\left(a-c\right)^2\left(2\right)\\c^2\ge c^2-\left(a-b\right)^2\left(3\right)\end{cases}}\)

Nhân vế theo vế của (1);(2);(3) ta có:

\(a^2b^2c^2\ge\left[a^2-\left(b-c\right)^2\right]\left[b^2-\left(a-c\right)^2\right]\left[c^2-\left(a-b\right)^2\right]\)

\(\Rightarrow a^2b^2c^2\ge\left(b+c-a\right)^2\left(a+c-b\right)^2\left(a+b-c\right)^2\)

\(\Rightarrowđpcm\)

giang ho dai ca
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Phạm Thị Mai Anh
28 tháng 7 2020 lúc 20:23

Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)

⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2

⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự

⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y

⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0

(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)

dấu = ⇔x=y=z⇔a=b=c

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
28 tháng 7 2020 lúc 20:26

Mai Anh ! cậu giỏi quá, cậu nè :33 

Khách vãng lai đã xóa
Chủ acc bị dính lời nguy...
28 tháng 7 2020 lúc 20:29

Ha~ Idol về mảng copy nay giỏi quá lè:33. Tác hại của việc copy paste là đây

Lần sai copy paste nhớ nhìn lại với chỉnh sửa đi nhá. Ko để này lộ liễu bôi bác lắm

Copy always mà vẫn 50k giải tuần đấy, ghê=))

Khách vãng lai đã xóa
Nguyễn Hưng Phát
Xem chi tiết
mo chi mo ni
23 tháng 10 2018 lúc 19:12

Bài này là bài chốt trong đề thi hsg toán 9 cấp huyện năm nay của đức thọ đó!

mo chi mo ni
23 tháng 10 2018 lúc 19:21

bạn vào Thư viện đề thi THCS Hoàng Xuân Hãn rồi bấm vào mục ở dưới dưới ak tên mục là

Đáp án đề thi hsg toán 9 huyện Đức Thọ năm  học 2018-2019 Đây là bài cuối của đề ak!

mo chi mo ni
23 tháng 10 2018 lúc 19:25

mk gửi hình rồi đó! bạn có thấy nó hiện ra chưa?

Nguyễn Trần Minh Nga
Xem chi tiết
Nhok_baobinh
Xem chi tiết
pham trung thanh
18 tháng 11 2017 lúc 22:06

Đặt a+b-c=x

       b+c-a=y

      c+a-b=z

\(A=\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ca}{c+a-b}\)

Ta có a;b;c là độ dài 3 cạnh tam giác nên x;y;z>0

\(4A=\frac{2a.2b}{x}+\frac{2b.2c}{y}+\frac{2c.2a}{z}\)

\(=\frac{\left(x+z\right)\left(x+y\right)}{x}+\frac{\left(x+y\right)\left(y+z\right)}{y}+\frac{\left(x+z\right)\left(y+z\right)}{z}\)

\(=3\left(x+y+z\right)+\left(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}\right)\)

\(\ge3\left(x+y+z\right)+\frac{\left(x+y+z\right)xyz}{xyz}\)\(=4\left(x+y+z\right)=4\left(a+b+c\right)\)  (Do x;y;z>0)

\(\Rightarrow A\ge a+b+c\)

Trần Lê Quang Huy
Xem chi tiết