Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nohara Shinnosuke
Xem chi tiết
Nguyễn Thị Hồng Điệp
22 tháng 4 2017 lúc 21:05

Ta có: \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\)

\(2A=3A-A=1-\frac{1}{3^{2017}}\)

=> \(A=\left(1-\frac{1}{3^{2017}}\right):2\)

\(A=\frac{1}{2}-\frac{1}{3^{2017}}:2< \frac{1}{2}\)

Vậy: \(A< \frac{1}{2}\)

Lưu Như Ý
Xem chi tiết
Truong_tien_phuong
24 tháng 4 2017 lúc 15:55

Ta có: 

\(A=\frac{1}{2}+\frac{1}{2^2}+........+\frac{1}{2^{2017}}\)

\(\Rightarrow2A=1+\frac{1}{2}+.........+\frac{1}{2^{2016}}\)

Khi đó: 

\(2A-A=\left(1+\frac{1}{2}+.....+\frac{1}{2^{2016}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{2017}}\right)\)

\(\Rightarrow A=1-\frac{1}{2^{2017}}\)

\(\Rightarrow A=\frac{2^{2017}-1}{2^{2017}}\)

\(\Rightarrow A< 1\)

VẬy: A < 1

Camehameha
24 tháng 4 2017 lúc 15:57

Ta có:                                                                       1/2+1/2^2+...+1/2^2017<1/1.2+1/2.3+...+1/2016.2017

1/2<1/1.2

1/2^2<1/2.3

..........

1/2^2017<1/2016.2017

Đỗ Thị Phương Anh
Xem chi tiết
Dũng Nguyễn Đình
19 tháng 4 2016 lúc 20:33

Ta có : \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\)

Mà \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{8^2}<\frac{1}{7.8}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{8}<1\)

Vậy B < 1

Vũ Ngọc Đoài
19 tháng 4 2016 lúc 20:45

haha

Nguyễn Đỗ Minh Châu
19 tháng 4 2016 lúc 22:49

Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};......;\frac{1}{8^2}<\frac{1}{7.8}\) 

<=> B<\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{7.8}\) 

<=> B<\(\frac{1}{1}-\frac{1}{2}+.......+\frac{1}{7}-\frac{1}{8}\) 

<=> B<\(1-\frac{1}{8}\) 

<=> B<\(\frac{7}{8}\) <1

Giang Cẩm Tú
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Arima Kousei
12 tháng 4 2018 lúc 18:11

Ta có :  \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{8^2}< \frac{1}{7.8}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow B< 1-\frac{1}{8}\)

\(\Rightarrow B< \frac{7}{8}\)

\(\Rightarrow B< \frac{8}{8}=1\)

Vậy \(B< 1\left(Đpcm\right)\)

Chúc bạn học tốt !!! 

nguyen huy dung
12 tháng 4 2018 lúc 18:12

nhan xet1/2^2<1/1.2=1/1-1/2

1/3^2<1/2.3=1/2-1/3

1/4^2<1/3.4=1/3-1/4

..................................

1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/8<

1/1-1/8=8/8-1/8=7/8<1 vay B<1

Haibara Ail
12 tháng 4 2018 lúc 18:17

Ta có

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.......;\frac{1}{10^2_{ }}< \frac{1}{9.10}\)

Suy ra

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)

Hay B < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\)

B<\(1-\frac{1}{10}\)

B<1(Vì 1/10 >0)

Học tốt nhé 

thien su
Xem chi tiết
nguyen duc thang
29 tháng 4 2019 lúc 15:37

B < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

B < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

B < \(1-\frac{1}{8}\)mà 1 - 1/8 < 1

=> B < 1 ( dpcm )

Vậy ...

\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}< 1-\frac{1}{8}=\frac{7}{8}< 1\)

Vậy B<1

Hok tốt

Nguyễn Xuân Nhi
Xem chi tiết
Nguyễn Thị Yến Nhi
24 tháng 4 2018 lúc 20:59

Câu 8( Mình không viết đè nữa nha)

a)   2-1/1.2 + 3-2/2.3 + 4-3/3.4 +…..+ 100-99/99.100

=  1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 +…..+ 1/99 – 1/100

=  1 – 1/100 < 1

=   99/100 < 1

    Vậy A< 1

ta ngoc anh
Xem chi tiết
ngan dai
Xem chi tiết