1/3^2 + 1/4^2 + 1/5^2 + ... + 1/100^2 < 1/2nhân3 + 1/3nhân4 + 1/4nhân5 + ... + 1/99nhân100
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100
= 1/2 - 1/100 < 1/2
=> ĐPCM
1/3^2 + 1/4^2 + 1/5^2 + ... + 1/100^2 < 1/2nhân3 + 1/3nhân4 + 1/4nhân5 + ... + 1/99nhân100
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100
= 1/2 - 1/100 < 1/2
=> ĐPCM
Chứng minh rằng : \(\frac{1}{3^2}\)+ \(\frac{1}{4^2}\)+ \(\frac{1}{5^2}\)+......+ \(\frac{1}{2017^2}\)< \(\frac{4}{9}\)
Chứng tỏ rằng ; B= \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-....-\frac{1}{2004^2}\)>\(\frac{1}{2004}\)
Chứng minh rằng\(\frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{2017^3}< \frac{1}{2^2}\)
chứng tỏ rằng
C = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}< \frac{1}{3}\)
D = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
chứng tỏ rằng :
a) \(1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^{10}}>\frac{1}{2^{11}}\)
b) \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{100^2}>\frac{1}{100}\)
Cho tổng A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+\frac{2018}{2017^2+3}+...+\frac{2018}{2017^2+n}+...+\frac{2018}{2017^2+2017}\)
(A có 2017 số hạng). Chứng tỏ A không là số nguyên
Chứng tỏ rằng ;S=\(\frac{1}{2^2}-\frac{1}{2^4}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)<0,2
Bài 1 :Chứng tỏ rằng
D=\(\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}< 1\)
Bài 2 :Chứng minh rằng \(\forall n\in Z\left(n\ne0,n\ne1\right)\)thì \(Q=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)không phải số nguyên
Chứng tỏ rằng \(A=\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{10^2}< \dfrac{1}{2}\)