\(\frac{\left(0,9\right)^5}{\left(0,3\right)^6}\)tính gtbt
Tính:
a)\(\left\{\left[\left(6,2:0,31-\frac{5}{6}.0,9\right).0,2+0,15\right]:0,2\right\}:\left[\left(2+1\frac{4}{11}:0,1\right).\frac{1}{33}\right]\)
b)\(0,4\left(3\right)+0,6\left(2\right)-2\frac{1}{2}.\left[\left(\frac{1}{2}+\frac{1}{3}:0,5\left(8\right)\right)\right]:\frac{50}{53}\)
c)\(\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{0,625-0,5+\frac{5}{11}+\frac{5}{12}}\)
c) \(\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{0,625-0,5+\frac{5}{11}+\frac{5}{12}}=\frac{3\left(0,125-0,1+\frac{1}{11}+\frac{1}{12}\right)}{5\left(0,123-0,1+\frac{1}{11}+\frac{1}{12}\right)}=\frac{3}{5}\)
Tính giá trị biểu thức"
a) \(\frac{20^5.5^{10}}{100^5}\) b) \(\frac{\left(0,9\right)^5}{\left(0,3\right)^{^6}}\) c) \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
BÀI 2 TÍNH
A = \(\dfrac{20^5.5^{10}}{100^5}\)
B = \(\dfrac{\left(0,9\right)^5}{\left(0,3\right)^6}\)
GIÚP MÌNH VỚI MN ƠIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
\(A=\dfrac{\left(20.5\right)^5.5^5}{100^5}=\dfrac{100^5.3125}{100^5}=3125\)
\(B=\dfrac{\left(0,3.3\right)^5}{\left(0,3\right)^5.0,3}=\dfrac{\left(0,3\right)^5.3^5}{\left(0,3\right)^5.0,3}=\dfrac{3^5}{0,3}=810\)
\(A=\dfrac{2^{10}\cdot5^5\cdot5^{10}}{2^{10}\cdot5^{10}}=5^5=3125\\ B=\left(\dfrac{0,9}{0,3}\right)^5\cdot\dfrac{1}{0,3}=\dfrac{3^5}{0,3}=\dfrac{243}{0,3}=810\)
Tính: \(\frac{\left(0,6\right)^5.\left(0,3\right)^3}{\left(0,2\right)^6.\left(0,3\right)^7}\)
\(\frac{\left(0,6\right)^5.\left(0,3\right)^3}{\left(0,2\right)^6.\left(0,3\right)^7}\)
\(=\frac{\left(\frac{6}{10}\right)^5.\left(\frac{3}{10}\right)^3}{\left(\frac{2}{10}\right)^6.\left(\frac{3}{10}\right)^7}\)
\(=\frac{6^5.3^3.\frac{1}{10^8}}{2^6.3^7.\frac{1}{10^{13}}}\)
\(=\frac{2^5.3^5.3^3}{2^6.3^7.\frac{1}{10^5}}\)
\(=\frac{10^5.3}{2}\)
\(=150000\)
Tính giá trị biểu thức:
a. \(\frac{20^5\times5^{10}}{100^5}\)
b. \(\frac{\left(0,9\right)^5}{\left(0,3\right)^6}\)
c. \(\frac{6^3+3\times6^2+3^3}{-13}\)
d. \(\frac{4^6\times9^5+6^9\times120}{8^4\times3^{12}-6^{11}}\)
e. \(\left(2^{-1}+3^{-1}\right):\left(2^{-1}-3^{-1}\right)+\left(2^{-1}\times2^0\right)\times2^3\)
f. \(\left(\frac{-1}{3}\right)^{-1}-\left(\frac{-3}{5}\right)^6+\left(\frac{1}{2}\right)^2:2\)
a. \(\frac{20^5.5^{10}}{100^5}\)
\(=\frac{20^5.\left(5^2\right)^5}{100^5}\)
\(=\frac{20^5.25^5}{100^5}\)
\(=\frac{500^5}{100^5}\)
\(=\left(\frac{500}{100}\right)^5\)
\(=5^5=3125\)
b. \(\frac{\left(0,9\right)^5}{\left(0,3\right)^6}\)
\(=\frac{\left(0,9\right)^5}{\left(0,3\right)^5.0,3}\)
\(=\left(\frac{0,9}{0,3}\right)^5.\frac{1}{0,3}\)
\(=3^5.\frac{1}{0,3}\)
\(=810\)
c. \(\frac{6^3+3.6^2+3^3}{-13}\)
\(=\frac{\left(3.2\right)^3+3.\left(3.2\right)^2+3^3}{-13}\)
\(=\frac{3^3\left(2^3+2^2+1\right)}{-13}\)
\(=\frac{3^3.13}{-13}\)
\(=\left(-3\right)^3\)
\(=-27\)
Tính GTBT:
Q = \(\left(\frac{2}{25}-1,008\right):\frac{4}{7}:\left[\left(3\frac{1}{4}-6\frac{5}{9}\right)-2\frac{2}{17}\right]\)
Làm chi tiết nhé, thanks
\(\frac{\left(1,2\right)^6}{\left(0,3\right)^5.\left(0,2\right)^7}\)tính????
\(\frac{\left(1,2\right)^6}{\left(0,3\right)^5.\left(0,2\right)^7}\)
\(=\frac{\left(\frac{6}{5}\right)^6}{\left(\frac{3}{10}\right)^5.\left(\frac{1}{5}\right)^7}\)
\(=\frac{\frac{6^6}{5^6}}{\frac{3^5}{10^5}.\frac{1}{5^7}}\)
\(=\frac{\frac{6^6}{5^6}}{\frac{3^5}{10^5.5^7}}\)
\(=\frac{6^6}{5^6}.\frac{10^5.5^7}{3^5}\)
\(=\frac{\left(2.3\right)^6.\left(2.5\right)^5.5}{3^5}\)
\(=\frac{2^6.3^6.2^5.5^5.5}{3^5}\)
\(=2^{11}.3.5^6\)
( ko chắc )
\(\frac{\left(1,2\right)^6}{\left(0,3\right)^5.\left(0,2\right)^7}\)tính
\(\frac{\left(-7\right)^n}{\left(-7\right)^{n-1}}\)(n\(\ge1\)) Tính GTBT
Bài 2 Tính GTBT theo cách hợp lí nếu có thể
c) \(\frac{5^3\times3^3}{5^3\times0,5+125\times2,5}\)d)\(\frac{5\times7^1+7^3\times25}{7^5125-7^3\times50}\)e)\(\frac{8^5\times\left(-5\right)^8+\left(-2\right)^5\times10^9}{2^{16}\times5^7+20^8}\)
h)\(\frac{\left(-0,25\right)^{-5}\times9^4\times\left(-2\right)^{-3}-2^{-2}\times6^3}{2^9\times3^6+6^6\times40}\)
Bài 3 Chứng tỏ rằng
a)