chứng minh:5n+7 và 3n+4 là hai số nguyên tố cùng nhau.
mình đang cần gấp ạ
mình cẩm ơn trước
Chứng minh rằng:2n+5 và 3n+7 là hai số nguyên tố cùng nhau
MÌnh đang cần gấp . Bạn nào có lời giải mình tick cho
mk lấy ví dụ n =1; 2n+5 = 2x1+5= 7; 3n+7=3x1+7 = 10;
ƯCLN (7;10) = 1
Bài giải :
Gọi d là ƯCLN(2n + 5 ; 3n + 7)
Ta có : 2n + 5 = 3(2n + 5 ) = 6n + 15 và 3n + 7 = 2(3n + 7 ) = 6n + 14
Suy ra ( 6n + 15 ) - ( 6n + 14 ) chia hết cho d
( 6n - 6n ) + ( 15 - 14 ) chia hết cho d
1 chia hết cho d => d = 1
Kết luận UCLN( 2n + 5 ; 3n + 7) = 1
Vậy 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau
Giải hộ mình với, mình cần gấp:
Chứng minh rằng: 3n + 4 và 5n + 7 là 2 số nguyên số cùng nhau
Gọi ƯCLN(3n+4; 5n+7) là d. Ta có:
3n+4 chia hết cho d => 15n+20 chia hết cho d
5n+7 chia hết cho d => 15n+21 chia hết cho d
=> 15n+21-(15n+20) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
=> d = 1
=> ƯCLN(3n+4; 5n+7) = 1
=> 3n+4 và 5n+7 nguyên tố cùng nhau (Đpcm)
Chứng tỏ rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau:
a,3n+4 và 3n+7
b,2n+3 và 4n+8
c,n và n+1
d,2n+5 và 4n+12
e,2n+3 và 3n+5
Giúp mình với ạ,mình đang cần gấp!!!
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
chứng minh 5n+7 và 3n+4 là hai số nguyên tố cùng nhau
Đặt UCLN(5n+7;3n+4)=d
=>\(\left\{{}\begin{matrix}5n+7⋮d\\3n+4⋮d\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}3\left(5n+7\right)⋮d\\5\left(3n+4\right)⋮d\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}15n+21⋮d\\15n+20⋮d\end{matrix}\right.\)
=>(15n + 21) - (15n + 20) ⋮ d
<=> 1 ⋮ d
=> d ϵ Ư(1) = 1
=> 5n+7 và 3n+4 nguyên tố cùng nhau
chứng minh rằng n và mn +4 là 2 số nguyên tố cùng nhau biết rằng n là số lẻ
làm ơn giúp mình mình đang cần gấp
gọi d là ước chung của n và n + 4 .
suy ra n +4 - n = 4 cũng chia hết cho d
theo bài ra d lại là số lẻ vậy d chỉ có thể bằng 1
Ước chung của 2 số là 1 suy ra 2 số là 2 số nguyên tố cùng nhau
a)chứng minh rằng:2 số tự nhiên liên tiếp nguyên tố cùng nhau
b)chứng minh rằng:Với mọi số tự nhiên n thì 7n+10 và 5n+7 là hai số nguyên tố cùng nhau
các bạn làm được câu nào thì làm,mình gấp lắm
Gọi ƯCLN(7n+10;5n+7)=a
Ta có : 7n+10 chia hết cho a => 5(7n+10) chia hết cho a
=> 35n+50 chia hết cho a (1)
5n+7 chia hết cho a => 7(5n+7) chia hết cho a
=> 35n + 49 chia hết cho a (2)
Từ (1) và (2) suy ra (35n+50)-(35n+49) chia hết cho a
=> 1 chia hết cho a
=> 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau
tick ủng hộ nha
Chứng minh rằng:
a, 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (n thuộc N )
b, 5n + 7 và 3n + 4 là 2 số nguyên tố cùng nhau (n thuộc N )
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Chứng minh rằng với mọi giá trị của số tự nhiên n thì 2n + 3, 3n + 4 là hai số nguyên tố cùng nhau.
Ai giỏi giúp mình nha. Cảm ơn trước!
gọi UWCLN(2n+3;3n+4) là d
2n +3 chia hết cho d, 3n+4 chia hết cho d
2n.3+3.3 chia hết cho d, 3n.2+4.2 chia hết cho d
6n +9 chia hết cho d, 6n+8 chia hết cho d
6n +9- 6n+ 8 chia hết cho d
6n +9- 6n- 8 chia hết cho d
1 chia hết cho d
d=1
với mọi giá trị của số tự nhiên n thì 2n + 3, 3n + 4 là hai số nguyên tố cùng nhau.
Cho mình hỏi tại sao đoạn đầu bạn lại tách 2n +3 thành 2n.3 +3.3 và 3n +4 thành 3n.2 +4.2 vậy ạ?
chứng minh rằng 12n+1 và 30n+2 là hai số nguyên tố cùng nhau
giúp mình nhanh với ạ cảm ơn trước ạ
TK :
Gọi d = (12n + 1 , 30n + 2)
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5(12n + 1) - 2(30n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
\(Gọi\left(12n+1,30n+2\right)=d\)
\(=>12n+1⋮d=>60n+5⋮d\)
\(30n+3⋮d=>60n+6⋮d\)
\(=>\left(60n+6\right)-\left(60n+5\right)⋮d\)
\(=>1⋮d=>d=1\)
Vậy \(12n+1,30n+2\) là 2 số nguyên tố cùng nhau.