chứng tỏ rằng : nếu a là bội của b ; b là bội của c thì a là bội của c
cho 3 số tự nhiên a,b,c khác 0 chứng tỏ rằng nếu a là bội của b; b là bội của c thì a là bội của c
a là bội của b => a = b.q ( q là số tự nhiên khác 0) (1)
b là bôị của c => b = c.t ( t là số tự nhiên khác 0) (2)
Thay (2) vào (1) ta có: a = c.t.q => a chia hết cho c
=> a là bội của c (đpcm)
Theo đề bài
a=m.b (m là số nguyên)
b=n.c (n số nguyên)
=> a=m.n.c
Do m,n là số nguyên => m.n là số nguyên => a là bội của c
Cho ba số tự nhiên a,b,c khác 0 , Chứng tỏ rằng : Nếu "a" là bội của "b" , "b" là bội của "c" thì "a" là bội của "c"?
a là bội của b
=> a chia hết cho b
=> a = bk
Mà b chia hết cho c
=> b = cq
=> a = bk = cq.k chia hết cho c
=> a chia hết cho c
=> a là bội của c
=> Đpcm
Cho ba số tự nhiên a, b, c\(\ne0\). Chứng tỏ rằng: Nếu a là bội của b; b là bội của c thì a là bội của c.
Có a là bội của b, b là bội của c
=> \(a⋮b\)và \(b⋮c\)
=> \(a⋮b⋮c\)
=> \(a⋮c\)
=> a là bội của c
Có a là bội của b =>a\(⋮\)b ( dấu \(⋮\)là chia hết nha )
Có b là bội của c =>b\(⋮\)c
Có a\(⋮\)b ,b\(⋮\)c =>a\(⋮\)c
=> a là bội của c
chứng tỏ rằng nếu a-2b là bội của 7 thì a-9b là bội của 7.Điều ngược lạ có đúng k
cho 3 STN a;b;c khác 0
Chúng tỏ rằng nếu a là bội của b ; b là bội của c thì a là bội của c
a) Chứng tỏ rằng abcabc là bội của 77
b) chứng tỏ rằng aaa chia hết cho 11
Cho 3 số tự nhiên a,b,c khác 0
Chứng tỏ rằng :nếu a là bội của b;b là bội của c thì a là bội của c
Theo bài ta có :
\(a\) là \(B\left(b\right)\) \(\Leftrightarrow a=b.q\left(q\in Z\right)\left(1\right)\)
\(b\) là \(B\left(c\right)\) \(\Leftrightarrow b=c.q_1\left(q_1\in N\right)\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta có :
\(a=c.q.q_1\)
\(\Leftrightarrow a⋮c\)
\(\Leftrightarrow a\) là \(B\left(c\right)\)
\(\Leftrightarrowđpcm\)
a) chứng tỏ rằng: số aaaaaa là bội của 37037
b) chứng tỏ rằng: giá trị của biểu thức
B=\(3+3^3+3^5+3^7+...+3^{2017}+3^{2019}+3^{2021}\) là bội của 273
a) \(\overline{aaaaaa}=a.111111=a.3.37037\) \(⋮\)\(37037\)
b) Nhận thấy các hạng tử trong B đều chia hết cho 3 => B chia hết cho 3
\(B=3+3^3+3^5+3^7+...+3^{2017}+3^{2019}+3^{2021}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+....+\left(3^{2017}+3^{2019}+3^{2021}\right)\)
\(=3\left(1+3^2+3^4\right)+3^7\left(1+3^2+3^4\right)+...+3^{2017}\left(1+3^2+3^4\right)\)
\(=\left(1+3^2+3^4\right)\left(3+3^7+...+3^{2017}\right)\)
\(=91\left(3+3^7+....+3^{2017}\right)\)\(⋮\)\(91\)
mà (3;91) = 1
=> B chia hết cho 273
B chia hết cho 273
Còn câu a thì mình không biết nhé, xin lỗi bạn.
Chứng minh rằng nếu a là bội của b thì -a là bội của b và -b là bội của a