tìm n thuộc Z đển+8 chia hét cho n+3
1/ chứng minh n^3 + 2n^2 - n - 2 Chia hét cho 6 với mọi n thuộc z
Tìm n thuộc Z để
a)2n-1 chia hết cho n+4
b) 3n chia hết cho 5-2n
c) 7n+11 chia hét cho1-3n
a, n-4 chia hết n-4
=>2(n-4)chia hết n-4
hay 2n-4 chia het n-4
vì 2n-1 chia het n-4
Nên (2n-1)-(2n-4) chia hết cho n-4
do đó 3 chia hết n-4
hay (n-4) thuộc ước của 3 là 3;1
+, n-4=3
n=7
+,n-4=1
n=5
Vậy n = 7;5
b, Có 3n chia hết 5-2n
=>2.3n chia hết 5-2n
hay 6n chia hết 5-2n
vì 5-2n chia hết 5-2n
nên 3(5-2n) chia hết 5-2n
do đó 15-6n chia hết 5-2n
Suy ra 6n+(15-6n) chia hết 5-2n
hay 15 chia hết 5-2n
nên (5-2n) thuộc ước của 15 là 15;5;3;1
Xét +, 5-2n=15
2n =-10
n=-5(loại vì n thuộc N)
+, 5-2n =5
2n=0
n=0(TM)
+, 5-2n=1
2n=4
n=2 (TM)
+,5-2n=3
2n=2
n=1(TM)
Vậy n=0;1;2
cho biểu thưc A = n-3 phần n-1
a) tim n thuộc z để A là phân số
b) tìm n thuộc z đển A NHÂN giá tri nguyen
c)tính giá trị A VOI n thuoc z thoa man n mũ 3 - n = 0
Tìm n thuộc Z để
a)2n-1 chia hết cho n+4
b) 3n chia hết cho 5-2n
c) 7n+11 chia hét cho1-3n
tìm n thuộc Z
n^2 + 4n -8 chia hết cho n +3
Tìm Min N thuộc N để n^3 + 7n^2 + 6n chia hét cho 125
giúp mk nha mình gấp lắm:))
thk các bạn
a) cho A = 10^8 +8 . chứng minh rằng A chia hết 9
b) Tìm n thuộc Z để 2n - 3 chia hết cho n+1
CMR a) n^2 + 4n + 3 chia hết cho 8 , n thuộc Z
b) n^3 + 3n^2 - n - 3 chia hết cho 48 , n thuộc Z
xét n^2+4n+3= n^2+n+3n+3= n(n+1) + 3(n+1)= (n+1)(n+3)
Mà n là số nguyên lẻ nên n chia cho 2 dư 1 hay n= 2k+1( k thuộc Z)
do đó n^2+4n+3= (n+1)(n+3)= (2k+1+1)(2k+1+3)= (2k+2)(2k+4)
= 2(k+1)2(k+2)= 4(k+1)(k+2)
Mà (k+1)(k+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2.
Vậy n^2+4n+3= (n+1)(n+3)= 4(k+1)(k+2) chia hết cho 4; chia hết cho 2 Vậy ...... chia hết cho 8
Tìm n thuộc z sao cho 2n-8 chia hết cho n+1
2n + 8 chia hết cho n + 1
=> 2n + 2 + 6 chia hết cho n + 1
=> 2(n + 1) + 6 chia hết cho n + 1
=> 6 chia hết cho n + 1 (Vì 2(n + 1) chia hết cho n + 1)
=> n + 1 thuộc {-1; 1; -2; 2; -3; 3; -6; 6}
=> n thuộc {-2; 0; -3; 1; -4; 2; -7; 5}
Ta có : ` 2n-8 \vdots n+1 ` và ` n+1 \vdots n+1 ` ` => ` ` 2n-8 \vdots n+1 ` và ` 2n+2 \vdots n+1 ` ` => ` ` ( 2n+2 ) - ( 2n-8) \vdots n+1 ` ` <=> ` ` 10 \vdots n+1 ` ` <=> ` ` n+1 in { -10 ; -5;-2;-1;1;2;5;10} ` ` => ` ` n in {-11;-6;-3;-2;0;1;4;9} `