CM: Đẳng thức \(\frac{2}{a.\left(a+1\right).\left(a+2\right)}=\frac{1}{a.\left(a+1\right)}+\frac{1}{\left(a+1\right).\left(a+2\right)}\)
Nhớ ghi cách làm lun nha !
Chứng minh đẳng thức \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\left(\frac{1}{a-b+b-c+c-a}\right)^2\)
Sai rồi thê này nè
a/ \(\frac{1}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
Ta co: \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}\)
b/ \(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
Ta co: \(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2-a}{a\left(a+1\right)\left(a+2\right)}=\frac{2}{a\left(a+1\right)\left(a+2\right)}\)
Chứng minh giúp mình mấy câu bất đẳng thức này nha
a) \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\left(a,b>0\right)\)
b) \(\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2\left(a,b>0\right)\)
c) \(y\left(\frac{1}{x}+\frac{1}{x}\right)+\frac{1}{y}\left(x+z\right)\le\left(\frac{1}{x}+\frac{1}{z}\right)\left(x+z\right)\left(0< x\le y\le z\right)\)
d) \(a+b+c\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a,b,c>0;a+b+c=abc\right)\)
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
bđt<=>\(S_a\left(a-b\right)^2+S_b\left(b-c\right)^2+S_c\left(c-a\right)^2\ge0\)
with \(S_a=\frac{1}{2\left(a^2+b^2\right)}-\frac{c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(S_b=\frac{1}{2\left(b^2+c^2\right)}-\frac{a}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(S_c=\frac{1}{2\left(c^2+a^2\right)}-\frac{b}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
cần cm \(S_a+S_c;S_b+S_c>0\)
lại có:\(S_a+S_c=\frac{1}{2}\left(\frac{1}{a^2+b^2}+\frac{1}{c^2+a^2}\right)-\frac{1}{\left(a+b\right)\left(c+a\right)}\)
\(>\frac{1}{2}\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(c+a\right)^2}\right)-\frac{1}{\left(a+b\right)\left(c+a\right)}>0\)
cmtt=>q.e.d
Rút gọn biểu thức A = \(\left(2-1\frac{1}{4}\right)\left(2-1\frac{1}{9}\right)\left(2-1\frac{1}{16}\right)...\left(2-1\frac{1}{400}\right)\)
ta dc kết quả là ?
trình bày rõ cách làm ra với nha.
\(Q=\left(\frac{2}{2+2\sqrt{a}}+\frac{1}{2-2\sqrt{a}}-\frac{a^2+1}{1-a^2}\right)\left(1+\frac{1}{a}\right)\)
\(=\left(\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+1}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(1+a\right)}\right)\left(\frac{a+1}{a}\right)\)
\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+a\right)+\left(1+\sqrt{a}\right)\left(1+a\right)-2\left(a^2+1\right)}{2\left(1-a\right)\left(1+a\right)}\right)\left(\frac{a+1}{a}\right)\)
\(=\left(\frac{1+a-\sqrt{a}-a\sqrt{a}+1+a+\sqrt{a}+a\sqrt{a}-2a^2-2}{2\left(1-a\right)\left(1+a\right)}\right)\left(\frac{a+1}{a}\right)\)
\(=\left(\frac{2a-2a^2}{2\left(1-a\right)\left(1+a\right)}\right)\)
\(=\frac{a}{a}\)= 1
Chứng minh công thức:\(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
Ta có: \(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\)
\(=\frac{a+2-a}{a\left(a+1\right)\left(a+2\right)}=\frac{2}{a\left(a+1\right)\left(a+2\right)}\left(đpcm\right)\)
Chứng minh công thức: \(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
Có: \(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{\left(a+2\right)-a}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\)\(=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
Có: \(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{2+\left(a-a\right)}{a\left(a+1\right)\left(a+2\right)}=\frac{2+a}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\):
Rút gọn các phân số, ta được: \(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
Bạn hiểu chưa?
a) Chứng minh hằng đẳng thức sau :
\(\frac{1}{a-2b}+\frac{6b}{4b^2-a^2}-\frac{2}{a+2b}=-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)\)
b) Chứng minh hằng đẳng thức Ơle sau :
\(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)
a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )
\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )
Biến đổi VP
\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)
\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )
b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)
<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )
Biến đổi VT của ( * ) ta có :
\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)
\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )
\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)
\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng
=> Hằng đẳng thức đúng