so sánh phần bù phần hơn
a)2017/2018 và 2016/2019
b)n+3/n+2 và n+4/n+1 (n là số tự nhiên)
So sánh hai phân số bằng cách so sánh phần bù (hoặc phần hơn)
với 1.
a)26/27 và 96/97
b)102/103 và 103/105
c)2017/2016 và 2019/2018
d)73/64 và 51/45
AI làm được cho lai luôn :
So Sánh :n+2016/n+2017 và n+2017/n+2018
làm theo kiểu phần bù =))
(n+2016)/(n+2017) = 1-1/(n+2017)
(n+2017)/(n+2018) = 1 - 1/(n+2018)
Vì 1/(n+2017) > 1/(n+2018) nên (n+2016)/(n+2017) < (n+2017)/(n+2018)
So sánh
\(A=\frac{2018^n-2017^n}{2018^n+2017^n}\)+\(\frac{2017^n-2016^n}{2017^n+2016^n}\)
So sánh bt N là số tự nhiên:
\(\dfrac{n+3}{n+4}\)và,\(\dfrac{n+1}{n+2}\) \(\dfrac{n-1}{n+4}\) và \(\dfrac{n}{n+3}\)
Lời giải:
$\frac{n+3}{n+4}=\frac{(n+4)-1}{n+4}=1-\frac{1}{n+4}$
$\frac{n+1}{n+2}=\frac{(n+2)-1}{n+2}=1-\frac{1}{n+2}$
Vì $n+4> n+2$ nên $\frac{1}{n+4}< \frac{1}{n+2}$
Suy ra $1-\frac{1}{n+4}> 1-\frac{1}{n+2}$
Hay $\frac{n+3}{n+4}> \frac{n+1}{n+2}$
-------------------------
$\frac{n-1}{n+4}< \frac{n-1}{n+2}=\frac{(n+2)-3}{n+2}=1-\frac{3}{n+2}$
$<1-\frac{n+3}=\frac{n}{n+3}$
1/ So sánh các phhan6 số sau ( không quy 9ong62 mẫu )
a/ n + 1/ n + 3 và n + 3 / n + 5 ( với n là số tự nhiên )
(Lưu ý / là phần nha )
b/ A = 1/ 2.3 + 1/ 3. 4 + 1/ 4.5 +...+ 1/ 99.100 với 1/2
(Giup mình với )
a/ \(\frac{n+1}{n+3}=\frac{n+3-2}{n+3}=1-\frac{2}{n+3}\)và \(\frac{n+3}{n+5}=\frac{n+5-2}{n+5}=1-\frac{2}{n+5}\)
Để so sánh 2 phân số trên,ta phải so sánh \(1-\frac{2}{n+3}\)và \(1-\frac{2}{n+5}\)
=> phải so sánh 2/n+3 và 2/n+5
Ta thấy n+3<n+5=>2/n+3>2/n+5=>1-2/n+3<1-2/n+5=>\(\frac{n+1}{n+3}< \frac{n+3}{n+5}\)
b/A=\(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}\)\(+...+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{2}-\frac{1}{100}\)
Do 1/100 >0 =>1/2-1/100 <1/2=>A<1/2
Nhớ cho mình k nha
AHIHI ^_^
1
a) chứng tỏ nếu phân số \(\frac{7n^2+1}{6}\)là số tự nhiên với n\(\in N\)thì các phân số \(\frac{n}{2}\)và \(\frac{n}{3}\)là phân số tối giản
b) Chứng minh
111............11 + 444.......4 + 1 là số chính phương
___________ ________
50 chữ số 1 25 chữ số 4
c)tìm các chữ số x,y sao cho 2014xy \(⋮\)42
d) so sánh A=\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2020}\)với 4
e) cho p và p+4 là nguyên tố (p>3)
chứng tỏ p+8 là hợp số
So sánh n+1/n+5 và n+3/n+4 ( với n là số tự nhiên )
Đặt : \(A=\dfrac{n+1}{n+5}\) và \(B=\dfrac{n+3}{n+4}\).
Ta có : \(A=\dfrac{n+1}{n+5}=\dfrac{n+5-4}{n+5}=\dfrac{n+5}{n+5}-\dfrac{4}{n+5}=1-\dfrac{4}{n+5}\)
Và : \(B=\dfrac{n+3}{n+4}=\dfrac{n+4-1}{n+4}=\dfrac{n+4}{n+4}-\dfrac{1}{n+4}=1-\dfrac{1}{n+4}\)
Cả \(A\) và \(B\) đều có hạng tử \(1\) nên ta so sánh : \(\dfrac{4}{n+5}\) và \(\dfrac{1}{n+4}\).
Quy đồng ta được :
\(\dfrac{4\left(n+4\right)}{\left(n+5\right)\left(n+4\right)}=\dfrac{4n+16}{\left(n+5\right)\left(n+4\right)}\) và \(\dfrac{n+5}{\left(n+4\right)\left(n+5\right)}\).
Do mẫu bằng nhau nên ta so sánh tử, ta thấy :
\(4n+16-\left(n+5\right)=4n+16-n-5=3n+11\).
Do \(n\) là số tự nhiên nên \(3n\ge0\), suy ra \(3n+11\ge11\).
Suy ra được : \(4n+16-\left(n+5\right)=3n+11\ge11>0\) nên \(4n+16>n+5\).
Do đó, \(\dfrac{4}{n+5}>\dfrac{4}{n+4}\Rightarrow1-\dfrac{4}{n+5}< 1-\dfrac{4}{n+4}\).
Vậy : \(A< B\) hay \(\dfrac{n+1}{n+5}< \dfrac{n+3}{n+4}\).
So sánh các biểu thức
a) A= 2015 x 2017 + 2016 x 2018 và B=2016^2+2017^2 -2
b) M=(9+1).(9^2+1).(9^4+1).(9^8+1).(9^16+1).(9^32+1) và N=9^64-1
Bài 1 : So sánh M và N biết :
\(M=\frac{2017}{2018}+\frac{2018}{2019}\) và \(N=\frac{2017+2018}{2018+2019}\)
Bài 2 : So sánh A và B biết :
\(A=\frac{2017}{987654321}+\frac{2018}{24681357}\) và \(B=\frac{2018}{987654321}+\frac{2017}{24681357}\)
Bài 3 : So sánh :
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}\)với 4.
Bài 4 : So sánh phân số sau với 1 :
\(\frac{1991\times1999}{1995\times1995}\)
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)