Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gia Ân
Xem chi tiết
Thắng Nguyễn
22 tháng 5 2016 lúc 18:40

c đề thiếu 

Gia Ân
22 tháng 5 2016 lúc 18:42

thiếu gì vậy bạn

Nguyễn Tuấn Minh
22 tháng 5 2016 lúc 18:43

Bạn ơi, cái câu b đấy

Minh tính đc A=22016-1. 

22016=(21008)2 là chính phương. Tuiy nhiên ko tồn tại 2 số chính phương liên tiếp là 2 số tự nhiên liên tiếp. Bạn xem lại đề bài nha

Giang Trần
Xem chi tiết
Nguyễn Hữu Thế
Xem chi tiết
do hoang thai bao 112_3
Xem chi tiết
Trần Xuân Mai
Xem chi tiết
Edogawa G
Xem chi tiết
Nguyệt
28 tháng 7 2019 lúc 15:35

\(A=\left(1+b^2+a^2+a^2b^2\right).\left(1+c^2\right)\)

\(=1+a^2+b^2+c^2+a^2c^2+b^2c^2+a^2b^2+a^2b^2c^2\)

\(=1+\left(a+b+c\right)^2-2.\left(ab+bc+ac\right)+\left(ab+bc+ac\right)^2-2abc.\left(a+b+c\right)+a^2b^2c^2\)

Thay ab+bc+ac=1 vào A, ta có:

\(A=1+\left(a+b+c\right)^2-2+1-2abc.\left(a+b+c\right)+a^2b^2c^2\)

\(=\left(a+b+c\right)^2-2abc.\left(a+b+c\right)+a^2b^2c^2\)

\(=\left(a+b+c-abc\right)^2\)

Vì a,b,c thuộc Z 

\(\Rightarrow\left(a+b+c-abc\right)^2\)là số chính phương

shitbo
28 tháng 7 2019 lúc 16:02

\(\hept{\begin{cases}\left(1+a^2\right)=\left(ab+bc+ca+a^2\right)=b\left(a+c\right)+a\left(a+c\right)=\left(a+b\right)\left(a+c\right)\\\left(1+b^2\right)=\left(ab+bc+ca+b^2\right)=a\left(b+c\right)+b\left(b+c\right)=\left(a+b\right)\left(b+c\right)\\\left(1+c^2\right)=\left(ab+bc+ca+c^2\right)=a\left(b+c\right)+c\left(b+c\right)=\left(a+c\right)\left(b+c\right)\end{cases}}\)

\(\Rightarrow A=\text{[}\left(a+b\right)\left(b+c\right)\left(c+a\right)\text{]}^2\Rightarrow\text{đ}pcm\)

Team Noo
Xem chi tiết
Phùng Thị Thanh Trúc
Xem chi tiết
Lê Châu
29 tháng 3 2017 lúc 21:31

mk chịu , bó tay nhập y tế

Nguyễn Trần Quỳnh Châu
Xem chi tiết