CMR: 2 đường thẳng vuông góc với 2 cạnh của 1 góc khác góc bẹt thì cắt nhau.( bằng phương pháp chứng minh phản chứng)
Chứng minh rằng nếu 1 đường thẳng cắt 2 đường thẳng thì
a, Các tia phân giác của 2 góc đồng vị song song với nhau
b,Các tia phân giác của 2 góc trong cùng phía vuông góc với nhau
Cho góc xOy khác góc bẹt. Oz là tia phân giác của góc xOy .Qua D thuộc tia Oz kẻ đường thẳng vuông góc với tia Oz cắt tia Ox ,Oy tại A,B
Chứng minh:
a, tam giác AOD= tam giác BOD và D là trung điểm của AB
B, Qua D kẻ đường thẳng vuông góc với tia Ox tại M cắt tia Oy tại F .Qua D kẻ đường thẳng vuông góc với tia Oy tại M cắt Ox tại E
Chứng minh:
+ DB là tia phân giác của góc NDE
+ MN//AB
Cho tứ giác ABCD, E là giao điểm của các đường thẳng AB và CD, F là giao điểm của các đường thẳng BC và AD. Các tia phân giác của các góc E và F cắt nhau tại I. Chứng minh rằng
a, Nếu góc BAD=130 độ, góc BCD=50 độ thì IE vuông góc với IF
b, Góc EIF bằng nửa tổng của một trong 2 cặp góc đối của tứ giác ABCD
cho tứ giác ABCD có hai góc đối bù nhau.Đường thẵng AD và BC cắt nhau tai E,hai đường thẵng AB và DC cắt nhau tại F.Kẻ phân giác của hai góc BFC và CEP cắt nhau tại M. CMR góc EMF =90
cho hình vuông ABCD cố định, độ dài cạnh là a. E là điểm di chuyển trên cạnh CD (E khác D ), đường thẳng AE cắt đường thẳng BC tại F, đường thẳng vuông góc với AE tại A cắt đường thẳng CD tạ K.
1) chứng minh hai tam giác ABE và ADK bằng nhau. Suy ra tam giác AFK vuông cân.
2) gọi I là trung điểm của FK. chứng minh I là đường tròn đi qua A,C,F,K và I di chuyển trên đường thẳng cố định khi E di động trên CD
tam giác ABF=Tam giác ADK ko phai la tam giác ABE=Tam giác ADK
sao ko ai giúp mk bài này hết vậy?
Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM .
a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC
b) Chứng minh AM=AN
c) Chứng minh AI vuông góc với BC
Bài 2 : Cho tam giác vuông tại A có góc C=30 độ
a) Tính góc B
b) Vẽ tia phân giác của góc B cắt AC tại D
c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD
D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD
Tính góc AKB
Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC
a) Chứng minh tam giác AKB=tam giác AKC
b) Chứng minh AK vuông góc với BC
c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
Cho tam giác ABC cân tại A. Trên cạnh BC lấy D , trên tia đối của tia CB lấy E sao cho BD=CE . Qua Đ kẻ đường thẳng vuông góc BC cắt AM tại M. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại N.
A) chứng minh MD=NE
B) Gọi I là giao điểm của MN,BC , chứng minh I là trung điểm MN
C) Đường thẳng vuông góc với MN, kẻ qua I cắt tia phân giác của góc BAC tại O. Chứng minh tam giác OBM = tam giác OCN
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
b) theo câu a, ta có:MD=NE
I1=I2(2 góc đđ)
DMI=90-I1
ENI=90-I2
suy ra DMI=ENI
xét tam giác MDI và tam giác NIE
MD=NE( theo câu a)
DMI=ENI(cmt)
MDI=NEI=90
suy ra tam giác MDI=NIE(g.c.g)
suy ra IM=IN suy ra I là trung điểm của MN
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O) .Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H giao điểm của OA và BC.
a, Chứng minh OA vuông góc với BC tại H
b. Từ B vẽ đường kính BD của (O). đường thẳng AD cắt (O) tại E ( khác D).Chứng minh AE.AD = AH. AO
c.Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh FD là tiếp tuyến của (O).
a) Do AB và AC là các tiếp tuyến cắt nhau tại A nên áp dụng tính chất hai tiếp tuyến cắt nhau ta có: AB = AC và AH là phân giác góc BAC.
Xét tam giác cân ABC có AH là phân giác nên AH đồng thời là đường cao. Vậy thì AO vuông góc với BC tại H.
b) Xét tam giác AEC và ACD có :
\(\widehat{A}\) chung
\(\widehat{ACE}=\widehat{ACD}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung cùng chắn một cung)
\(\Rightarrow\Delta AEC\sim\Delta ACD\left(g-g\right)\)
\(\Rightarrow\frac{AE}{AC}=\frac{AC}{AD}\Rightarrow AE.AD=AC^2\)
Xét tam giác vuông ACD, đường cao CH, ta có :
\(AH.AO=AC^2\) (Hệ thức lượng)
Vậy nên ta có : AE.AD = AH.AO
c) Xét tam giác vuông ABO, đường cao BH, ta có: AH.AO = BO2
Do BO = DO nên AH.AO = OD2
Lại có \(\Delta AKO\sim\Delta FHO\left(g-g\right)\Rightarrow\frac{AO}{FO}=\frac{OK}{OH}\Rightarrow OK.OF=AO.OH\)
Vậy nên OK.OF = OD2 hay \(\frac{OK}{OD}=\frac{OD}{OF}\)
Vậy nên \(\Delta OKD\sim\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{FDO}=\widehat{DKO}=90^o\)
Vậy nên FD là tiếp tuyến của đường tròn (O).
Qua điểm A ngoài đường tròn (O), vẽ đường thẳng xy vuông góc với OA. Lấy điểm B thuộc (O) sao cho góc AOB là góc tù. Tiếp tuyến tại B của (O) cắt đường thẳng xy tại C. Đường thẳng qua B và vuông góc với OC tại H cắt OA, xy và (O) lần lượt tại D,E và F( F khác B)
a/ Chứng ming tứ giác ACOB nội tiếp
b/ Chứng minh CB^2=CE.CA
c/ Chứng minh 1/BE+1/BD=1/BH
d/ Đường trung tuyến CM của tam giác CBO cắt đoạn BH tại I, tia OI cắt BC tại N. Gọi K là trung điểm OI.Cm: ba điểm N,H,K thẳng hàng
bạn nhầm đề bài rồi!
xy vuông góc với OA thì đường thẳng qua B vuông góc với OC(hay xy) thì không thể cắt được
Cho ABC vuông ở C, có góc A bằng 600. Tia phân giác của góc BAC cắt BC ở E.Kẻ EK vuông góc với AB ( K thuộc AB). Chứng minh AC =AK và AE CK Chứng minh KA = KB. Chứng minh EB > AC. Kẻ BD vuông góc với tia AE( D thuộc tia AE). Chứng minh ba đường thẳng AC, BD, KE cùng đi qua 1 điểm.